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FINAL REPORT

"Regularization and Approximation of a Class of Evolution Problems in Applied Mathematics"

R. Showalter and-G. F. Carey

The major effort of this project has been the development of the foundations for
regularization techniques related to conservation equations-and some new possibly far-reaching
contributions to this area. The-approach that has been taken'is a departure from the usual artificial
viscosity type of strategies which are produced on.a somewhat adhoc-basis. The basic strategy-is
to regularize. locally- by a inicro-structured: parabolic system. A mathematical analysis of .the
regularized equations-has been developed to support.our-approach. Supporting-approximate
analysis and numerical experiménts have-been made.

The-development and the mathematical foundations of these microstructure models have
‘been primary achievements cf-the project. The relevant nonlinear systems of partial differential
equations have also been shown to provide good models of diffusion or convection of fluid or gas
through a heterogeneous porous medium. Examples include flow-in fissured media,-problems
with-adsorption, heat diffusion with freezing-melting, and models for semiconductors. We have
‘established- that the problems-are well-posed and developed the theory of the regularity and
dependence of the solutions on data. Such information will aid approximation theory and the
design of algorithms:to numerically simulate solutions to these types of problems.

The major step came with the rather complete devélbpment in-[1] of the linear case together
with appropriate convergence-and approximation.results. These results were extended in part to
fully nonlinear versions in {2]. :Classical versions were givén. in [8]. This work was summarized

in the review article [3] and has been received with much interest. Moreover; the applications to

stationary problems [10] and-to porous media [11] are underway.




We have made related numerical studies using finite elemeénts with.the regularizing strategy
and-the res—ults,are'promi's"ing. We have also been developing some related ideas which are based
on superconvergence concepts in-the approximate methods used to solve both boundary and
evolution PDE's [4,5). This is a very topical research area at-present as-far as post_processing
computed solutions is concerned [13,14]. Our approach is different in that we are using the post-
processing strategy to. develop improved- models and to develop alternative regularization
strategies. This procedure also is appropriate for discrete homogenization. at a macro-structure
level-and can be combined with statistical averaging at the micro-structure level as a regularization
strategy.

Numerical studies with regularization techniques have been applied to flow calculations
[6,12]. This work is being extended currently to least-squares finite element analysis including
local regularization. Our previous work with a least-squares finite element formulation and
parabolic regularization-[7] (motivated by [9]) confirmed that this type of regularization procedure
is applicable and the numerical results are positive. Some of the challenging aspects of the
formulation arise inlcc’)mbining the microstructure regularization within the framework of a
macrostructure Galerkin finite element anaiysis. A formulation for this-embedding has been

developed.
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_ Diffusion .of Fluid in a Fissured Medium
. - with: Micro-Structure
R:E. SHOWALTER* . and  N.J. WALKINGTON
Department of ‘Mathematics Department of Mathematics
Unriversity of Texas _~ Carnegie-Mellon University
- ' “Austin, TX 78712 Pittsbuirgh, PA 15213
1. Intrqc,l*uction
We:shall stiidy- the-Cauchy-Dirichlet-problém for degenerate parabolic:sysiéris
of the form . ‘ | N
{1.1.2) Vb—ta(@):z-V-A(*ac,V%H:F B(z,s,VyU)-7ds>.f, =€,
) ) 6 - ~ . - _ ' . -
‘ (1.1b) ‘a—t'b(U)"" Vy - B(z,y, VyU) 2 F, y-€ s,

‘("1"'1"(:) E(.’B, y)ﬁ’yU)'l:;'*'ﬂ(U(xa y,t) _,’;u({v, t))éo ’ Y€ fz: .

Here  is-a domain in R™ and for each value of the-macro-variable z € U is:specified
a domain-Q, with bop;i(iat}; I'y. for the micro-variable y-€ $i.. Each of a,b,p is
‘2 maximal monotone graph. These graphs are not necessarily-strictly increasing;
lthey—may. be piecewise constant or. multi-valued. The elliptic operators in (1.1.a)-and
{(1.1.b).are nonlinear in the gradient of degree p—1 > 0-and g — 1 >0, respectively,
with %. + -,1; > %,;so,somg.speci‘ﬁc degeneracy is-also permitted-here. Certain first
order spatial derivatives can be added to (1:1.a)-and .(1.1.b) with no diffizulty,
and. corresponding problems with constraints, i.e., variational inequalities, can be

treated similarly. A particular .example impox*tént for applications is the linear

This work was supported by grants from the National Science Foundation and the Office of Naval
Research. . i




constraint
(1.1.c") U(z,y,t) = u(z,t), y€l,,z€eN

which then replaces (1.1.c). The system (1.1)with p(s) = 1]s|?72%s is called a

regularized micro-siructure model, and (1.1.2), (1.1.b), (1.1.c') is the corrésponding

matched micro-structure model in which (formally) € — 0. An example of such a

system as a model-for the flow-of a fluid (liquid-or-gas) through a fractured medium
will'be given below. In such a context, (1.1.a) prescribes the flow on the global scale

of the fissure:system and-(1.1.b) gives the flow ~n: the microscale of the individual

cell at a specific point_z in the fissure system. The transfer of fluid between the.

cells and surrounding medium is prescribed by (1.1.c) or (1.1.c'). A major objective

is to-accurately model this-fluid exchange between the cells and fissures.

‘The plan of this paper is as follows. In Section 2 we shall give the precise
description and resolution of the stationary problem in a variational formulation by
monotone operators:from Banach spaces to their duals. In order to achieve this we
describe first thc‘relevantésrjbolev spaces, the continuous direct sums of these spaces,
.and-the c_listributed trace and constant functionals which occur in-the system. The
operators are monotone functions or multi-valued subgradients and serve as models
for nionlinear elliptic equations in divergence form. We develop an abstract Green’s
theorem to describe the fesolution: of-the variational form-as the sum of a partial
differential equation and a compleméntary boundary operator. Then-sufficient con-
ditions of coercivity type-are given to-assert the-existence-of generalized solutions
of ‘the variational equations. In Section 3 we desé¢ribe the restriction of our system
to appropriate products of L” spaces. T_he Hilbert space case, r = 2, serves not
only-as a convenient starting point but leads to the géneralized accretive estimates
we-shall need for the singular case of:(1.1)-in-which a or b is not onlynonlinear but
multi-valued. The stationary operator for (1.1)-is shown to be m-acéretive in -the
L} space, so we obtain a generalized solution in the sense-of the nonlinear semi-
group theory for general Banach spaces. As an intermediate step we shall show the

special case of a = b-= identity is resolved as a strong solution in every L” space,
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1 < 7 <-00,-and also-in-appropriate dual .Sobolev spaces.

I order to motivate-the system (1.1), let’s consider the flow of a fluid through
a fissured medium. This is assumed to be a structure of porous and- permeable
blocks or cells which are separated from-each. other by a highly developed system
of fissures. The majority-of fluid-transport will occur along flow paths-through the
fissure system, and the relative volume of the cell structure is much larger than
that of the fissure system. “There is assumed to-be no-direct flow between adjacent
cells, since-they are individually isolated by the:fissures, but the dynamics of the
flux exchanged between each cell and its surrounding fissures.is a major aspect of
the model. The distributed micro-structure models that we develop-here contain
explicitly the local"jgeom'etr}f of the cell matrix at each-point of the fissure system,
and they thereby reflect more accurately the flux exchange on the micro-scale of

the individual cells:across-their intricate interface.

Let the flow region 2 be a bounded domain-in IR™ ‘with boundary I" = 9. Let
p(z,t)-and p(z,t) be the density- and pressure, respectively, at z € Q and't >0,
each being obtained by aﬁeraging:75§er an appropriately small neighborhood- of z.
At =ach such x let there be given.a cell 2., a bounded domain in R" with smooth
boundary I'; = 0. The collection of these Q., z-€ Q, is the distribution of blocks
or célls in the structure. Within -each Q, there is fluid of density (z,y,t) and
pressure j(z,y,t), réspectively, for y €, t > 0. The conservation of fluid mass in

the fissure system. yields the global diffusion equation
a, ~ 0 ([ 3\ 9

+q(z,t) = f(z,1), te,
in which the total concentration p + ag(p) includes adsorption or capillary effects,

(1.2.a)

the function k; gives the permeability of the fissure system in the j'* coordinate
direction, g(z,t) is-the density of-mass flow of fluid into the cell Q_ at z, and f is

the density of fluid sources. Similarly we have within cach cell
d,. . =~ 0 (.- (.0p\ O
1.2.b — b = E —_— L p=o—— | — = .
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where b denotes adsorption or capillary effects-and.the functionjc,- gives-the local
cell permeability. Assume the flux across-the cell boundary is driven-by the pressure
difference-and is also-proportional to the-average density p.on that-pressure interval.

Thus, we have the interface condition.

: .- {.0p\ Op o
(1.2.c) Z—pkj (p_I_’_> —l)ju,.- +u(p(p—p)) 30, yel:,
j=1 i‘ayJ’ ay]

where 7 is-the unit outward normal'on T'; and p is-the relation between the flux
-across-the-interface and the density-weighted pressire difference as-indicated. The
total mass flow into the-cell is given-by

R S N A
(1.2.d) j q(z,t) = :/I“;p;;l k,._(p(—az_) a—y;u,- s .
In order to complete the dynamical system we need only to add a-bcundary condi-

ticn on T'to (1.2:a) and to postulate the state equation
(1.2.€) . p-=:5(p)

for the fluid in the fissure-and cell systems. Here s(:) is a given monotone function

(or graph) determined by the fluid. ~

In order to piace (1:2).in a more.convenient form, we introduce the monotone

function ]
S(w) = / s(r)dr
0

and the corresponding flow potentials for the fluid in the fissures-and cells

u=5(p) , U=5S().

In these variables with a change of notation the system (1.2) can be written in the
form (1.1) together with boundary conditions on T for u or A{Vu)- v and initial

conditions at ¢ = 0 on a(u), HU). Note that the~ax;crage density on the pressure

interval p,p is given by

] o
/7=-—-1 -/ s(r)dr-_-u U ]
i

p—pJ; P—p




As an alternative to (1.2.c), we could require that = p on I'; and this leads to
(1.1.¢")in place of (1.1.c). Finally, we note that the classical Forchheimer-type
corrections to-the Darcy Law for fluids lead to-the case:p = ¢=3/2.

Systems of-the forrxnz(l.l);were developed-in-[20], [21], [9]-in-physical chemistry
as models for diffusion through a medium with a prescribed microstructure. Similar
systems arose in soil séience [4], [13] and in reservoir models for fractured media
{[10], [15]. By homogenization methods such systems are obtained as limits of exact
micro-scale models, and then the effective coeflicients are computed explicitly from
local material properties (24], {16], [2]. An existence-uniqueness theory for these
linear problems which exploits the strong parabolic structure of the system was
given in [23]. One can alternatively eliminate U and obtain a single-functional
differential equation for u in the simpler space L?(f2), but the structure of the
equation then obstructs the optimal parabolic type results [17]. Also see [12] fora

nonlinear system with reaction-diffusion local effects.

2. The Variational Foimulation

We:begin by stating and resolving the stationary forms of our systems. Let Q
‘be a bounded domain in R” with smooth boundary, I' = 8. Let 1 < p < oo and
denote by LP(S2) the space of p** power-integrable functions on £, by L=°() the
essentially bounded measurable functions, and the duality pairing by

(s ey = ]nu(x)f(x) iz, uwelI*9Q), fel”(9),

for any pair of conjugate powers, % + - = 1. Let G§°() denote the-space of in-
finitely differentiable functions with compact support in-Q. W™P(Q) is the Banach
space of:-functions in LP(?) for which each partial derivative up to order m belongs
to LP(Q), and Wy 'P(2) is the closure of C§°(Q) inWW™?(Q). See [1]for information
on these Sobolev spaces. In addition, we shall be given for each z € © a bounded
domain €2, which lies locslly on one side of its smooth boundarvy Ty, Let1 € g <~
and denote by v, : Wh9(Q,) = LY(T,) the trace map which assigns boundary val-

ues. Let Ty be the range of +,; this is 2 Banach space with the norm induced by
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v from W19(9,). Since ', is-smooth, there is a unit outward normal vg(s) at
each s € I';. Finally, we define W}'q (Q;) to be that closed subspace consisting of
those ¢ € WHe(Q,) with y,¢0 € IR, i.e., each v;(¢) is-constant a.e. on I'y. We shall
denote by V, the gradient on W14(Q,)-and by V the gradient on W12(Q).

‘The essential construction to be used below is an example of a continuous
direét sum of Banach spaces. The special case that is adequate for our purposes.
can-bé describéd as follows. Let S be a measure space and- consider the product
(measure) space @ =  x S, where  has Lebesgue measure. If U € LY(Q) then
from the Fubini theorem it follows that U(z)(z) = U(z,z), z € Q, z € S defines
U(z) € LY(S) at a.e. z-€ §, and for each & € LI (Q)-

/{;(U(x),@(a:))p(s) dz = ‘/Q{L U(z, 2)¥(z, 2) dz} dz-= // Ud.
' Q

Thus L9(Q) is naturally identified as a (closed) subspace of LI(£2,L9(S)), the
Bochner ¢** integrable.(equivalence classes of) functions from Q to L(S). Suppose
X +© — R is the characteristic function of a measurable 2, C © and w € L(S).

For each a >:0 we have

{(z,2) € Q: X(@)w(z) <a} = x {z€S:wiz) <a}U(R~Q)x S
and-for a < 0 we delete the second term. Thus, X - w is-ineasurable on Q. Tt follows
that each measurable step function u = Y X;jw; from LI(Q, L4(S)): is-measurable
on @, and hence, belongs to L4(Q). This shows L(Q) is dense in and therefore
equal to L(Q, L(S))

In order to prescribe a-measurable family of cells, {Q,,z € 2}, set § =R", let
Q€ © x R" be a given measurable-set, and set Q, = {y € R" : (z,y) € Q}. Each
Q. is measurable-in IR” and by zero-extension we identify LI(Q) — LI( x IR™).
and each L9(Q;) < LI(IR"). Thus we obtain from above

£/(Q) = {U € L1(Q, LY(R™) : U(s) € L(R%) , ae v Q} .

We shall denote the duality on this Banach space by
(U, ®)1(q) = / {/ U(fv,y)@(w,y)dy’“"} dz, U€eLYQ), €L’ (Q).
o UJa, '

6




The state space for our -problems will be the product LY(Q) x L' (Q).

Note that W19(Q,)-is continuously imbedded in- L(,), uniformly for z € .

It follows that the direct sum

W, = L9(Q,WH(R,) = {U € LQ): Uz) € WM(R,) , ae. 2€Q,
and / U (@)1, dz < 00}
Q

is a Banach space. We shall use a variety of such spaces which:can be constructed
in this manner. Moreover we shall assume that each 2, is a bounded domain in
JR™ which lies locally on one side of its-boundary, Tz, and 'z is a C?-manifold:of
dimension n—1. We assume the trace maps v; + WH9(Q,) — L4(T,) are-uniformly
‘bounded. Thus for each U € W, it follows that the distributed trace 4(U) defined
by 7(U)(z,s) = (v(U(z))(s), s € Tz, z € Q, helongs to LI(Q, LI(I'z)). The
distributed trace vy maps W, -onto T, =L9(Q,T;) — LY(Q, LI(L.)).

Next consider the collection {W}9(2;) : z-€ Q} of Sobolev spaces given above
and denote by Wy = LI(Q, W29(,)) the corresponding direct sum: Thus for
each U € W, it follows that the distributed trace y(U) belongs to LI(Q). We
define W' to be the subspace of those U € W for which 4(U)-€ W*P(R). Since

v : Wy — L3(£)) is continuous, W,"” is complete with the norm

1Ulwee = [UHw, +lvUllwre -

This Banach space W, ?(Q) x W, will be the energy-space for the regularized prob-
lem (1.1) and 'Wé P will be the energy space for the .constrained problem in which
(1.1.c) is replaced by the Dirichlet condition (1.1.c). Note that Wy'P is identified
with the-closed subspace {[yU,U] : U-€ Wy'*}. of Wy'P(Q) x W;. Finally, we shall
let Wy -denote the kernel of v; Wy = {U € W, : 97U = 0"in T }.

We have defined W14(€2,) to be the set of w € W9(Q,). for which y,w is a
constant multiple of 1z, the constant function equal to-one on I';. Thus W}19(§;)
is the pre-image by 7, of the subspace R-1, of T,. We specified the subspace W)

similarly as the subspace of W, obtained as the pre-image by 7 of the subspace

7




LI(2) of T, To be precise, we denote by A the map of LI(2) into 7, given by
M(z) = v(z): 1g, a.e.z € R, v-€ LI(); Xis an isomorphism of LI(§2) onto a closed
subspace of 7;. The-dual map )’ taking 7] into LY(Q) is given by

Ng(v) = g(w) = / 9z(1z) - v(z) dz geT, , ve LI(Q),
QA
so-we have Ng(z) = g.(1;), a.e. £ € Q. Moreover, when g, € L7 (') it follows
that ]
9:(12) =/P 9:(y)dy ,

the integral-of the indicated boundary functional: Thus, for.g-€ LY (£, LY (T,)): c"];’,
Mg € L9 () is given by

(2:1) No@) = [ 0@)dy, se. e Q.
)

The imbedding X of Lq(Q) into‘v’_];,andfits‘ dual map A will play an essential role:in
our system below. ’

We consider elliptic differential operators in divergence form as realizations
of monotone operators from Banach spaces to their duals. Assume we are given

A:Q x R* = R" such that for some 1 < p < 00, g; € L? (), go € L}(), ¢ and
co.>0

(2.2:a) Z(m,g ‘)f—isf’cohtihuous in E € R" and measurable in z,-and
1Az, O < el +01(a) ,
@2b) (A=)~ Az, 7), £~ 7) 20,
(2:2.c) X(m,g) 52 Colﬂp"' go(z)
for a.e. € 2 andall .’iﬁe—ﬁ".

Then the global diffusion operator A : W™P(Q) — W=1#'(Q) is given by

Au(v) = / E(a,, ﬁu(x))ﬁv('c) dv , u,v € WiP(Q) .
Q

S




Thus, each Au is equivalent to its restriction-to C§2(2), the-distribution
Au= .Au|cg°(9) = -V - A(, Vu)

which: specifies- the value of this nonlinear elliptic divergence operator.

In-order to specify a collection -of local -diffusion operators, B, : WH(Q2;) —
Whe(Q,)', assume we.are given B Q> R" = R"™ such that for some 1 <q < 00,
hy € LY (Q), Ho € LMQ), cand cp >0
5(2.3.a)3§($,y,»€ ) is continuous in £ € R"™ and measurable'in (z,y) €:Q, and:

1B, E) S el€l™ +hy(s,9)
(235)(B(z,9,8) - Blz,y,7), E-7) 20,
—(2-3-0):,5(:8, y,zf;), ¥3 2> ,Co|§ |¥ = ho(z;5y)

for a.e. (z,y) € Q and-all £,77€ R™.

Then define for each z €

B,w(v) = /{; E(m, yieyw(’y))eyi’(y) dy. ,. w,v-€ Wlan(Qz_),,

The elliptic différential:operator onQ; is given by the formal part of B;, the dis-
tribution ' )

‘BthBzwICEo(Q:) = ~_~~6y * g(x) °y 6yu’)

in. Wy9(Q;)!. -Also, we shall-denote by B : W, . W, the distributed operator

constructed-from the:collection {B; -z:€ Q) by

BU(z) =B:(U(z)) , ae z€Q,Uc¢ ~wq .
and we note that this-is equivalent to

BU(V) = ];B, (U(z))V(z)dz , Uvew,.

The coupling term in our system will be given as a monotone graph which is-a

subgradient operator. Thus, assumem: R — R* is convex and bounded by

(2:4) m(s) < C(Js|" + 1) . seER,

0




hence, continitous. Then by

m(g) = / / (9(z,s)) dsdz, g€ LUQ, LI(T.))

we obtain the convex; continuous m : LI(Q, L9(T';)) = RF. Assume ! i 1> %A

that WgP(Q) < LI(£), and consider the linear continuous-maps
A WEP(Q) = LI(Q,L(T,)) , 74: We— L9(Q,LY(T:)) -

Then the. composite function. .
MUl =i(yU—du), weWy(Q), UeW,;

is convex and continuous on Wo1 P(Q) x W,. The subgradients are directly computed

by standard results:[11]. Specifically, we have-§ € 87n(g) if and oniy;- if
i(z,s) € Om(g(z,s)), ae s€Tlz, ae z€Q,

and we'have [f, F] € 0M[u,U]if and only if f = —X'(u)in W=1#' (Q) and F =+ (u)
in W, forsome p-€-0r(yU — Xu).

“‘The following result —glvgg-asufﬁcignt conditions for the -stationary- reqularized

problem to be well-posed.

Proposition 1. Assumel<p,q, = 7 Lyl =2 p, and defirié the spaces.and operators
A, v-as.above. Specifically, the sets {Q; : 2:€:Q} are-uniformly bounded with smooth
boundaries, and the trace maps {¥.} areuniformly bounded. Let thefunctions A,B,

and-m satisfy (2.2); (2.3) (2:4); and assume in addition that

(2:5) m(s) > colsl?, seER .

Then for each pair f € W= (Q), F € W there exists-a-solution of

(2.6.2) we WoP(Q): A(w) - N(p) = f in W17 (Q)
(2.6.h)- UeW,:BU)++'(n) =F inW,
(2.6.c) (i€ LI(Q,L9 (L)) : p € 04U — Au) .
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For-any such solution we:have

(2.7). ][ wz,s)ds = (F(z),1;), ae z€Q,

iz

where 1, denotes the constant unit function in W4($2,).

Proof. The system (2.6)-is a “pseudo-monotone plus subgradient” operator equa-
tion-of the-form A

[4,U)-€ WEP(Q) x Wy : for all [o, V] € WEP(@) x W,

Au(v) + BU(V) + 0M[u,Uj([v, V]) 3 f(v) + F(V) .

(2.6"

It remains-only- to-verify-a coercivity condition, namely,

28) Au()+ BU(U) + (47 = hu)
’ el + 01w,

=+ 400
as Jlullyrecay+IUlw, = +oo..

Choose k _—;max*ﬂy,,r :*y-’é“Q:, z-€ 1} and let v, ='(xu‘;:, ...,v®) be the unit-normal

on I';. Forv € Wh4(Q,) we have by Gauss’ Theorem
/ﬂ (Iol* + ynglvl? ™ nv) = /Q Bn (yalv(¥)|?) dy.

- / V2(s)salreo(s)le ds -

x

Holder’s inequality then-shows
—"”“%q(g,) é’k”’)’xi}"%«:(p,) + gk|lv] %:(19‘;)‘||,3nv"1ﬂ(ﬂz) ]
-and-from this follows
ollZec0.y S 2klravller,) + F) (g = B HI0nv]|Le(q,)
by Young’s inequality. From here we obtain

(2.9) CO'"V"?,:;(Q) < "'I'V||(},:4(Q,1,q(n,))—+ "-:vyV”{EQ(Q) , Vew,.
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Thus from the a-priori estimate
Au(u)+BUU), + MHU - M) >
(2.10): collVull%s gy — llgoll ey + CO,“ﬁyU“%q(Q)'* Aol 2y
+’COII7U - ’\u"‘},q(ﬂ;u(l‘x*)') ? u€ ‘VVOLP(Q) » UEW,,

the Poincaré-type-inequality (2:9) and the equivalence of ||Vul| pe(q) with the norm
on Wé"’ (), we can obtain the ccercivity condjtion {2.8). Specifically, if (2.8) is
bounded:by K, then (2.10) is bounded above by

K (llullwr @) +WVyUllze@y + Ul Lo, Lor. )
< K(llullwrr ey + IVyUllze@+ 190 = MollLicazeway + IMellzea)

and theé last termsis»dominatedibyli;hé first. This gives. an explicit bound on each

of these terms and; hence, °n"7"ﬁ"w;yr, @ +] U,

Finally, we apply (2.6.b): t6 the function ¥V € W; given by Vi(z,y) = v(z)-for
- some v-€ LY(), and this shows

u(ov) ={(Fyv)

since BU(V) = 0, and thus

[ XutEta)ts =00) = o) = [ (P 1oy ds

The identity (2:7):now follows.from (2.1):
For the more general case-of the degenerate stationary problem. corresponding

to (1.1), we obtain-the following result.

Corollary 1. Let ¢: R — R¥ and & : R — R be convex and-continvous, with
©(0) = (0) = 0, and assume

(2.11) o)< C(sl"+1) , ®(s)2C(s)+1), seR.
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-For each pair f € W=1»p I(Q), e W;, there exists a solution of

(212.2) u € WP (Q): ad Alu) - N(gp=f in W (Q)
(2:12.b) U €W, :b+BU)++(u)=F in W,

(ZlZ.c) p € (U = du) in . 'SE\Z,L"'(I‘,—)); ,. and.
(2.12.d) a€0p(u) in LI, v - 98(U) in LY (Q) .

For any such solution we have

12.13) /;z b(zyy) dy + /1: pizysyds = (F(z),1:), ae. z€Q.

Proof. This follows.as above bu with the continuous:¢onvex function

W)= [ o) dot [ [ B(U e, ) dy e (aT ), U] € WP@XW, .
T}ge.subgrgdient can:be;computed termwise:becausethé.three térms are.contiriuous

of L9(2);.L%(Q), and L2(§2; LA(T';)), respectively.

Remark. “The lower bound (25) on m(-) may be deleted in -Corollary 1 if such
a ioWeg estimate- is knowuto hold for @. It:is alsc. unnecessary in the matched

microstrué¢ture-model; see. below.

Tn -ordeér to prescribe the boundary condition (L.1.c) explicitly, we develéﬁ
an appropriate Green’s formula for -the operators-Bz. Note that we can identify
L7 (Q,)-€ W=b4'(Q,) since W2*(Q,) is dense in LI(£,), so it is mecaningful to
déﬁ‘ne )

D. = {w € WH(Q,): Bw € L(Q.)} .

“This is the domain for the-abstract Green’s Theorem.

Lemima 1. Thereis a-unique operator 0, : Dz — T, for which B, = B;w+v.0 v

for all w € D,. That is, we-have

(214)  Bow(v) = (B, v)iqn) + 100, 10) , v € WI(R,),
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for every w-€ Dy.

Proof. The strict morphistn v, of W!(Q;) onto: Ty iras a dual 5} which is an
isomorphism.of T onto W, 'd(Q;)+, the annihilatorin W L9(02.)"of the kernel-of
vz- For each w & D, the &iﬁ'ereucg:;Bzw — Bow is‘in. Wol’q(Q,c -, 55 it is equal to

vz(0zw) for-a unique-element Ow € T,’: .

Remark. The identity ‘(2.,14) is a zeneralized decomposition of B, into a partial
diffe; ential- operator on ) »nd a boundary condition-en T,. I I'; is smooth; v,
denotes the unit outward normal on T';, and if B(‘m,.-,ﬁyw:i < ;[Wl"ql(s‘l',)]", then

w € D and from the classics! Green’s Theoremwer’obtain

~

Bew(o) =~ (Bew,o)iay = | Blass, Dyulielshmols)ds, v e WhH(Q,).

Thus, O;w-= §(x,,6gw) 7, is-the:indicated normal derivative ;iﬁtqu(E',): when
—‘ﬁ(m, ~,Y7yw) is as- smooth as above, and-so we can: regard J;w. in general -as an

extension of this norilinear differential-operator on the boundary.

‘The formal part 6£ B : Wy — Wy is the operator B : Wy — W, siver by the

restriction:B(U) = BU|w,. Since Wy i¢ dense in LI(Q) we can spécify the domain
D ={UeW,:BU)eL(Q)}
on which w: obtain as before a distributed form of Green’s theorem.

Lemma 2. There is a unique operator 8 : D — 7, such-that

B(U)(V) = (B(U)av)L(Q) + (aUa 7V) ’ UeD , V€ :Wq .

Proposition 2. Let the Sobolev spaces and trace operators be given-as above. Ve
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summarize them in the-following diagrams

L9(Q) LY(T,) L(Q) L9(Q, LI(T,))
U u U U
whQ) s T, W, o s
U - U 2l
W) — Rl W = L)
U U U f
Wed(Qz) — {0} Wo —— {0}

in which-7y, is'the restriction of ¥ to'Wj. W), Wy aré densein L), LI(Q),
respectively. Let operator B, z-€ Q, and B be given and define their formal parts
B, B as above. Then construct the daspains Dz, D and boundary.operators-0;,.0

as in Lemma 1 and Lemma-2, re:pectively. It follows that for any U € W,,

(2) BU(z) = B(U(z)):4n Wg:‘q(Qz)' for a.e. z € Q, and U € D if and only if
U(z) € D; for a.e. z.€ L and z = B.U(z) belongs:to LI(Q);
(b) for each-U € D,

8U(z)=8,(U(z)) in T; for a.6. £ €Q

| BU = BU +~(X8U) in W, ,
and:for-each 'V € Wl we:-have
L BU(2)(V(x)) d = /Q BU@V(e) dyda + /ﬂ {8V (), 1)1V () d -
Proof. (a) ForV € W, we obl:.;xinfrom the definitions of B, B and B,, respectively,
s BU(2)V(z) dz = /,, BU(V)da = /9 B:U(z)(V(z))ids = /ﬂ B.U(z)V(z) dz ,
y 7 1

and so the first equality holds since W§ = L7 (2, W,9(Q.)'). The characterization

of D is immediate 1ow.




(b) For V € W, we-obtain from the definitions-of 7, 8, 9z, respectively, and (a)

f (v:V () dz = aU (. r= | (BU — Wa)V(x) da
JavGv@)d /ﬂ BU(vV)d /ﬂ (BU - BUY@)V/(z)d

= /Q 0z(U()) 72V (z) dz .

Since the range of v is 7; = L9 (R, T), the first equality follows. The second is
immediate from Lemma 2 since on Wy, ¥ = Aoy and 4 = 4]\, and the third

{follows from the preceding remarks.

‘Corollary 2. In the situation of Corollary 1, f € I;_"; () and F-€ Lqi(Q) if and
only if Au € L7(2) and B(U) € L%(Q), and in that case the solution satisfies

almost everywhere
a(z) € 0p(u(z)) , a(z)+ Au(z)+ /ﬂ bz, y)dy= f(z) + /ﬂ : F(z,y) dy T E€Q,
w(s) =0, . | , - seT,
b(z,y)€-08(U(z,y)), bz,y) +BU(z,y) = F(z,9) y€Q:

u(z, s)-& Om(vU(z,s) = u(z)) , 8:(U(x))(s)+u(z,s)=0, s€er,.

FinaLIly, we note that corresponding results for the stationary matched mi-
crostructure model are obtained directly by specializing the system (2.6') to the
space W), This is identified with {[yU,U] : U € W'} as a subspace of Wa"?() x
W,, and we need only to restrict the solution [u,U] and the test functions [v, V],
v = 4V, to this subspace to resolve the matched model. Then the coupling term
M does not occur in the-system; see the proof of Proposition 1, especially for the
coercivity. These observationsyield the following ;xnaiogous results for the matched

microstructure model.

Proposition 1'. Assume 1 < p, q,% +1> %’, and define the spaces and.operators

X, v as before. Let the funictions A, B, and m satisfy (2.2), (2.3) and (24). Then

for cach pair f€ W~hr'(Q), F € Wi there exists a unique solution of
(2.15.0) w € W) Aw) = f+(F1) in WP (Q)
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(2.15.b). UeW,::B(U)=F in W,

(2.15.¢) YU = Xu in LY(Q)CT,.

Corollary 1'. 7Siuppose— ©,® are given as before and assume (2.11). For f, F as

-above-there exists a unique solution of

(2.16.2) ueWpP(Q):a+ (b1) + A(w) = f +(F,1) in W-1'(Q)
(216b) UeW,:b+B{U)=F in W,

(2.16.c) U =Xu in LYQ) CT,

(2.16.d)  a€dp(u) in L«'(si);,, b€ dd(U) in L (Q).

In addition, f € L9 () and F € LY (Q) if and only if Au € L% (Q) and B(U) €

LY (Q);-and in:that.case the solution satisfies almést everywhere.

a(z) € Bp(u(z)) , o(z) + Au(z) + /ﬂ ¥z,y)dy = f(z)+ /ﬂ F(z,y)dy, z€,

u(s) =0 ser,
Yz,y) € 02(U(z,v)) , Y=,y) + BU(z,y) = F(z,y) , veQ:,
U(z,s) = u(z), sel,.

Remark.  For the very special case of p = ¢ > 2 and a(u) = u, bU) = U in
the situation of Proposition 1 it follows from [6} or [19] that the Cauchy-Dirichlet
problem-for (1.1) is well-posed in the space LP(0, T; Wy 'P() x W, ) with appropriate
initial data u(z,0), U(z,y,0) and sourcé functions f(z,t), F(z,y,t). A similar
remark holds in the case of Proposition 1’ for the matched model with (1.1.¢).

These restrictive assumptions will be substantially relaxed in the next section.

Furthermore, variational inequalities may be resolved for problems correspond-
ing to either the regularized or the matched microstructire model by adding the

indicator function of a convex constraint set to the convex function ¥. Thus one can
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handle:such problems with constraints-on-the global-variable u, the local variables

U, or their difference Au — yU -on the interface.

3. The L‘-Opefators

Assume we are in the situation of Proposition 1. ‘We define a relation or multi-
valued-operator C, on the Hilbert space L*(Q) x L*(Q)-as follows: C,[u,U] 3:(f, F]
if and-only if

(3.1.2). w € L*(Q) AWy (Q) : A(u) — Np= f € L}(Q)
(3-1.b) U e IHQ)NW,: BU)+7'n=F € I}(Q)
for some p-€-3m(yU = Xu) in L9 (R, L7 (T;)).

Thus, C; is the restriction of (2.6)-to L*(Q) x L*(Q): Note that M € L*(Q) by
@7). -

Lemma 3. If 6 : R — R is monotone, A’Lipschitz, and-g(0) = 0, then for each_pair
Calu;, U512 (£, B}, 5=1,2,
there-follows
(fl: - fZaEb'(ul - u2))L2(Q) + (Fl - FZ; U(Ui' _UZ)) L’(Q‘)r- 2> 0.

Proof. Since o is Lipschitz and ¢(0) = 0, we have o(u; — u) € Wy'P(Q) and

o(Uy —U,) € W,. Also the chain rule applies to these functions, so we compuie
(Auy = Auy, a(u;,ug)) = / (.Z(z, ﬁul) = .I(:z,Vug‘))e(ul —uz)o'(u; —u2)dz ,
Q
(BUy.— BUs, o(Uy — Uy)) =
f / (B(z,v.V,Us) — Bz, y. ¥, 02)) ¥y Uy — Un)o'(Uy ~Un)dydz .
aJo,
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Both-of these-arc non-negative because of (2.1.b), (2.2.b) and o’ >-0. The remaining

term-to check.is

(=X (2 = p2), o(ur =2)) 2 gy + (¥ (11 = 12), o(Ur — U2))

= / / w1z, $)— p2(z; 5)) (o(qUs — 7U2) — o(Auy — dun))ds dz .
I,
Since-o is a monotone function and dm is a monotone graph, this integrand is
non-negative and the result follows.
As a conséquence of Lemma 3-with o(s) ='s, the operator €, is monotone on

the Hilbert space L@(Q),X,Lz(Q). Moreover, we obtain the following.

Proposition 3. The operator-C, is maximal monotone-on L*(2) x L*(Q). Let
j : R = R* be convex, lower-semi-continuous, and j(0)-= 0. If 3m is a function,
then-C, is also single-valued and

(3.2) (Cz[ﬂl, U]_] - Cé[‘liz,rUg’], [6'1 ’azl)sz(ﬂ)xLi(Q)' 2 0

for any selections o, € 3j(uy — uz) in L*(Q) and o, € 35(U; — Uz) in L*(Q).
Proof. To show C, is maximal monotone it suffices to show that for any pair
[f, F] € L*(R) x L*(Q) there is a solution-of

(3.3.2) u€LX(QNAWIP(Q): ut+Au) = N(u)=f in WH'(Q),

(33b) UeLQNW,:U+BU)++'(x)=F in W,

(33.c) pelLf (@, L"(f;)) : p€0m(yU ~ M) .

The existence of a (unique) solution of (3.3) follows as in Proposition 1, but by
considering the pseudo-monotone operator [A4,B] on the product space L?(2) N

Wy 'P(Q) x L3(Q)NW), and the convex function, 1 Ilu"%:(m-{-% U172y +7(+U —>),

on that space.

To establish the estimate (3.2), we consider the lower-semi-continuons convex

function

(34) jlu,U]= /Q (J'(u(x)) + _/Q i (U(z,)) dy) dz , [u,U] € L*(Q) x L}Q) .
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The subg‘radiént,of jis gi\"vcn o’hlt‘his product space by

= [0}, 02) € 8j[u,U] if and only if

(ol @)+ [ [ @)V e) dy)adm L [0, V] € Q) x Q)

where

o1(z) € 85(u(z)), ae z€Q, 0a(z,y) €87 (U(z,y)), ae (z,¥)€qQ.

‘The Yoshida approximation j. of j is given as i‘n ( 3:4) but with j replaced by je.
‘Since the derivitive of Jje is Lipschitz, monotone, and contains tl*:e—origin,rit follows
by Lemma 3 that the special casé:of (3.2):with: j, is trué: Thus, C, is §j-monotorie
[7)-and the desired result follows; sincéthe singlé-valued: Co equals its minimal

‘section.

We-define the realization of (2.6) in LT (Q) x L"\Q), 1 £ r & 00, as follows. For

¥ > 2, C, is the.restriction-of C3 to L"() x L"(Q), and.for 1 <r <2, C, is the
closurein L7(92):x L7(Q) of C,.

‘Corollary 3. The operator €, is m-accretive in L"($) x L™(Q) for 1 < 7 < oo.

Proof. Let (I +¢eCe)([u;,Uj]) 2 [f5, F3), J = 1,2, and assume [f;, Fj] € L"(Q) x
LHQ)if r > 2. Set j(s) = Isl', s € R. From Proposition 4.7 of [7] it follows that

s = w2, Ur = Ualllzr oy xzr(@) S W1 = for B = BolllLroyxLr (@) -

Taking’[fz,Fz]li;: [0,0] we see-that. L7(§) x L™(Q) is invariant under (I +-€Cy)" 1,

and then the estimate shows this operator is & contraction on that space. We

~have Rg(I + €C;) = L™() x L"(Q) directly from the definition for r > 2, and for

1 < r <2, Rg(I +€C,) D L*Q) x L*Q), which is dense, so the result follows.

-easily.

Remarks. The Ca.uchy-Dirichlet problem for the regularized model (1.1) is well-

posed in LT(Q) x L"(Q) when a(u) = u, U) = U, and » > 1. This follows

from Corollary 3 and the theory -of evolution equations generated by m-accretive
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operators in-a uniformly convex Banach;space: For example, from [18] we recall the

following;:

iff € WH1(0,T; X) and-we € D(C..), where C, is m-accretive on the uniformly

convex -Banach space X, then there exists a unique Lipschitz function

w: [0,T) = X for-which
w'(t) +Cr(w(t)) 34(), ae t€(0,T),
w(t) € D(C,) for-all t€[0,T], and

w(0) =

See [3]: for details (Theorem I11.2:3) and references: By applying this result to the
operator C, given in X = L"(Q)x L7(Q), 1 < r < 00, we obtain a generalized
strong solution w(t)-=[u(t),U(t)] of the system

3 t
2ot 1 auta 4 [ Henlly, = fe)+ [ Fewtdy, se, te@D),
u(s;t) =0, _ sel’,”
AU ZsthE) . myrre ~
—4%&2+wa%ﬂ=ﬂ@%ﬁ, ye:,

p(z,s,t) € Om(U(z; s t) = u(z, 1)), 8:U(z,s,t)+ y(fa:?vs,#) =0, sel;,

u(?’sﬂ) ='u0($‘) 3 U(m,y,O)::Uo(a:,y) .
The restrictionson the data f(t) = [f(t), F(t)] and wo = [uo, Us) can be considerably

relaxed in the Hilbert space case-# =2{7).
By applying Proposition 1" similarly, it follows that corresponding results for

the matched model are.obtained. Thusone obtains-a generalized strong solution in:

LT(Q) x L™(Q), 1 < r < o0, of the system




Bu(aa; t)+A @8+ | 3U(2,ty?t)d = f(z, t)+/F(a: y,t)dt , z € Q, t€(0,T),
uls,t) =0, | sel,
Q,U(m,y,t)i

Bt -+ BU(:v,y,t) = F(mayit) ) y€Q,,
U(z,s,t) =u(z,t)., seT,,

u(z,0) = ug(z) , U(z,y,0)="Us(z,y).
This follows as-above froin the analog of Proposition 3 and Corollary 3.

We return to consider the fully nonlinear model (1.1). The generator of this
evolution system will be-obtained by closing up the composition -of C, with the
invérse of (9, 8] in .L1(Q) x L}(Q). Thus, we begin with the following.
Definition. Cla, b]'a?[‘f; ﬁ’];if;Cg[u“,-Uf]{a (£, F] and-a € dp(u) in LX(Q), b-€ d3(U)
in L(Q) for some pair [u,U] as in-(3.1).

Lemma 4. Thé operator C is acérétive on L¥() x L*(Q).if either m is a function

or-if both ¢ and 0@ arefunctions: - f
Proof. Let € > 0 and suppose that (I + £C)|aj, ;] 3 [f;,£;] for j = 1,2. Thus.we
‘have eCafuj, U;): 3 [f; —a;, F; — ;li-a; € Op(uj), b € d3(U;) as-above. First we

choose oi(s) =sgnf (s), the Yoshida-approximation of the.maximal monotone sgn,

apply Lemma 3 and obtain ‘
(91 — dg, sgn];*'(iq - uZ))Lz(g) + (b;, = b2,58n6 Uy - U2)) 12(Q).
<N = F2) ey + I(F = B)F|eicoy -
If dp-and O are functions,.then
(ar —.a2) sgngi(ur —u2)-=a; —a)™,
(b — b2) sgng (Uy = Uz)= (b — b2)*
soletting § —-0-gives
(3.5) (a1 —a)* ||l La o)+l (bi=b2) ¥ lzr oy < (G =) @ +HFE=F) L o) -
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Thé samesholds for negative parts, so it follows'that (I+€C)™! is an order-preserving

contracticn with-respect to-L1(Q)x L}(Q) for each € >-0.
Next we suppose dm is-a function. Choose j(s) = s, so-that 85 = sgn™t, and
then set
g1(z) = sgng (w1 — uz + a1 — az) € sgn¥(uy —u2) Nsgnt(a; — a2).,
o9z, y) =sgng (Uy — Uz +by — b) € sgnt(Uy — Up) Nsgnt (b, — ba)..
Proposition 3 applies here to-give (3:5). A similar estimate for negative parts yields
the-result. ‘
Although-C is not:accretive on.L" for 1 < r, we can-obtain L*° estimates when
the-graphs dp, 0% are:not too dissimilar.

Corollary 4. If (I +¢C)[a,b] 3-[f,F] with € >0, then

| lla*]l 2 oy < max(ao(k), £z (@)) »
(3.6)

16* 1200 (@) Scmax (bo(k), |F* [zo(@)) »

where k =-max(ag " ([[f*]|z=), b5 (IFH])):

Reinarks. Here aq is the minimal section (azp:)o, a{*i is the minimal séction of
(0p)~?, and by, by} are defined similarly from 9%. ‘Specifically, we-obtain an ex-
pliéit a—priori bound ‘on "a'F}"'Loo(Q)‘ —md §"b+"Lc}o(Q) wh‘en "ff'*;"Loo_(Q) € Rg(a(p)
and [|F+|ze(q). € Rg(0%). By similar estimates for negative-parts, we obtain ex-
plicit estimates-on ||allze(q). and |[bllze(q) for eny pair f € L(Q), F € L=(Q)
if Rg(8p) = R and Rg(0d) = R -or (trivially) if both Rg(dy) and Rg(9®) are

bounded.in IR. Finally, we noté that in the:special casé ¢ = @, we obtain -
max(|la®]| e (o), 16% | Leo(@)) < max(lf Tl ey, 1FF | Les(q)) -
Pioof. By the choice of k >:0 we:have

Op(k)> O 21/ g, OB(R) 3 & 2 IF* |1
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for some pair £;,43. Subtract:these from ‘the-operator equation, multiply by-either

sgng- (" - ’") ] sgng (U — k)

or by
sgnd(a =& +u—k) sgng (b— £, +U = k),

depending on whether dy and 8@ are functions-or m is a function, respectively.

Apply Lemma 3-and let § —-0 or apply Proposition:-3, respectwely, to obtam

Il(a ) o+ (0= 32)+IIL1(Q) <l(fF* 31)+IIL1(0) +|(FF — LYl -
The right side is-zéro, so thé-result follows.
Proposition 4. (Moser) Let (u,U) € Wy'P(2) x W, be a solution to
A@)—Xpd f in WHP(Q),
BU)++'w3F in W,,
p€:0m(yU — Au)..
1) ¥ (f,F)€ L™ (Q) x L7 (Q) withr"> 2, and
(2.2.¢") Az, E) € > et — go(z)
where:go € L7 (), then u€ L°°(Q)
2) If, additionally, F' € L°[Q; L* (Qs)) witht' > 2,
(2.3.¢) B(2,y,£)- €2 colel? = ho(a, )

wheréhg E,LW‘[Q’;.L?‘L(Q,,)],_-’and,m;sati'sﬁés' the growth condition(2.5) and m(0)-=0,
thenU-€ L*°(Q). -

Proof.
1) Estimate (2.7) of Proposition 1-shows that. X' € L7 (), so-that
A)=f=Np=Ffel™Q).
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Leinima: 3-of [22]-can now be-used to conclude u« € L®(Q).

2) Define U = U = ul. Since B() = B(U), it follov s that
B(fj) ++7p=F in W, , i € dm(yU),

and for almost-every z € §; and-every V € W,
(*) /Q B(z,-, VyU(x)) =V V() + /P p(&)yV(z)y= /Q Fz,)V(z) ,

with p(z):€ 8m(7U(z)). We now use Moser iteration with (¥) to conclude IIT} (@) zeo(a.) £
C, where:C is to be chosen indepéndently of z €.

If Uz) € L*(Q) (r = g suffices for the first iterate), define s = 1 -+ ot

(-1--{-‘1—, = 1). Let H € C*(R) satisfy H(s)-= s|* if |s| <.so, H affine for |s| > sq, and
define G(s).= fo’IH ! (§)|‘1 d€. Since H has linear growth; it follows that G(U’) EW,.
Substituting G(ﬁ) for V in-(*) gives

/ﬂ . B(a,, ViU (2))-Vy U (2)G' (U(=))+ /P zy(z‘)'rG,(ﬁ,(x)) = /Q Fi, )G (T (x)) -
The first term of the above is bounded below using 7('2.3;c' ). To estimate the seccnd
term, use ‘

() 47 2 m(D)-(as m(0) = 0), and

(ii) sgn(T) = sgn(G(T)) (so that G(T)/T >0-when U # 0),
to get s o o .

nGU) = U G(U)/U 2 m(U)-G(U)/U
> colT1? GOYT = <ol T1*1G(D))] -
< /ﬂ V16T + o /P AT Ye@)] < /Q FG) + hoG'(T) .

The first term inay be written as [V, H(U)|¢ which, using the Sobolev embedding

‘theorem, is- bounded-below by

AHDN wg —¢ [ [H@D),
Ln=9(0,) Iz
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where € > 0 can be chosen arbitrarily small (sce equation (2:9)). The right hand

side is bounded using ’Halder’sfinéqgality.

CMEDN ng  + [ (FUHGD) - elHD)
Ln=9(az) Lz -

.1 - =
< = (1Pl @al6@llz@a + ol I @lzeca)

when sy = 00, H(T). = |T|*, and |T|+=Y|G(T)| = n(r)|T|*9, where rj(r):= Ls9 =

ta+ %’-&)"1; If £ is.chosen as &€ = min <, oo M(r); it follows thgt‘

1Tl Lovtntn-0riny S (es)M* max [1, Tl (o, -

The result-now. follows:by iteration-of the above. estimate..

‘Theorem: L. Assume:the hypotheses of Proposition 1, Corollary 1, Lemniafif, and

Propostion 4. Also, assume-that Rg(dy) dnd Rg(6<I>) are both ‘bounded-or that
both -are eqiial to R. Then C, the closure of C in-LY() x L*(Q), is m-accrétive.
Proof. Leét f € L’”(Q)and F-e€ L=(Q). Cbrbﬁhr_,y 1 asserts there is:a solution of
(2.12). If:the graphs djp:and 9% have bounded range, then a € L(2), b € L™(Q),
and- it follows from Proposition 4 that u € L*(R)) and U € .Ez(Q) This shows
C2[u,U] 3-[a= f,b—E), so (I + C)([a,b]) 3 [f,F]. Thus, Rg(I + C) is dense in
and, hence, equal to L1() x L}(Q).

If the:ranges of 9-and 3% equal R, then‘iby‘CorQllar'y 4 any solution satisfies

lellzoy S K [blls@ S K,

where K depends on f and F. Replace 0p,d% by the appropriately truncated

Do, 89 ;¢ The solution-with these truncated graphs-then is a solution of the-equa-

tion with the original graphs, so-we-are done.

Corollary 5. Under the hypotheses of Theorem 1, problem:(1.1) has a unique
generalized solution (a;b) € CI0,T;L* () x LY(Q)], provided the data satisfy
(f, F) € L0, T; L' (). x L*(Q)), and-((0), 1(0))-€ D(C).
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Thisfollowsfrom the Crandall-Liggett Théccem:[8], which is proved by showing
that the step functions, (a® "), .constructed from solutions to- the -differericing

scheme
(3:7) (a®,0") —(a"F 8" 7C(a", 47):5 T(f", P

(= £);converge uniformly when-the operator-C ism-accretive. Benilan [5] proves

that these generalized-solutions are unique.

All-of Ou;;tijes'ultS'll‘old for the-matched microstructure model:problem. Specif-
ically, Lemma 4 and:-Corollary 4 are obtained from Proposition: 3, and Proposi-
tion 4 is-actually simpler for the matched problem. The analogs of Theorem 1 and
Corollary 5 show that the-matched problem (1.1.a); (1.1.b), (1.1.c') has.a unique
generalized solution (g,b) €:C[0,T; L} () x LX(Q))-

The:next theorem shows-that if the data is further restricted, the genera]iked
solutions will satisfy the partial differential equation (1.1).. The following notation

iS“i}SCd?;

L(Ty=L"[0,T;L7(Q)*x L"(Q))] 1<r<oo,

V=WP(Q)x W, ,

V(T) = LP[0,T; Wy P ()] x LU0, T3 W,] ,

V()= Wi [0,T; W17 (Q)] x W' [0, ;Wi .
Theorem 2. Assume the hypotheses Qf’Theéf;m 1 and in addition that (f,F) €
LYT) N V(T and (a(0),5(0)) € ~,IJ(—C)ﬂ V'. Then the generalized solutions of
Corollary 5-satisfy ‘

382)  (a,b)eV(T), (wU)eWT), .
(3:8.b) gg(a,b) + (A(w) = Ny, BU) ++'p) =(f, F) in V(T)' ,
(3:8:¢) (asb) € (04(u),88(U)) , -u-€ dm(Iu=~U).

Proof. The results of Grange and-Mingot [14] show that the step functions (aV, b")

and (uN;UN) generated from the differencing scheme (3.7) converge weakly in V(T)
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and V(T'): respectively. Moré. ver, equation (3.8) will be satisfied in the limit, pro-
vided-the weak limits (a, b)-and (u, U) satisfy (a,b) € (d¢(w), 0P(U)). To establish
this -inclusion, let (v, V) € V(T) and (&;b) € (8¢4(v),08(V)). The growth condi-
tions.on ¢ and & guarantee that (a™,b"):and (@,b) € V(T)' are-functions, so it is
possible-to deﬁnef(aN —&, = I;), to be. the pair of functions truncated above and
below by +s (s > 0). This pair of functions is bounded in L*°(T")-and converges in
LY(T)-to (e — &, b—b),, so converges in L™(T) for 1 < r < co. Ifr >-max(p', q'), it
follows that L"(T')-C V(T)', so the sequence (a™ — &, b" — E), -converges -strongly
in V(T')'. The monotonicity of d¢ and 0@ imply

0< <(aM =g, b — b), , (N —v, U™ - V)> .

-

Passing to:the litiiit as N — 00, and thensletting s — oo yields
0<{(@=5b-1), @-v,U-¥)), (@} e (04),08(v).

Since (8¢(-), 8%(-)) is maximally monotone, it follows that (a, b) € (0¢(u),03(U)). H

Finally, we note that the: corresponding solution of the matched problem sat-

isfies

(3.8a") (a;b) € V(T), (U,U)eVT),

(3.8 20+ (AGU)BUY) = (5, F) in Wo(TY,
(3.8.¢) (a,b) € (Op(U),08(U)) , U €Wy,

where the:space Vo(T)-is given-by
Vo(T) = {U € LT[0, T; W) s 9(U) € L7 [0, T; Wy )}

with the appropriate norm for which (v(U),U) € V(T) for each U € Vo(T).
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Diffusion in a Fissured Medium
w1th Mlcro-Structure

R E. SHOWALTER"

Department of Mathematics
The University of Texas at Austin
Austin, Texas 78712

The work:described below:was done with N.J. Walkington of Carnegie-
Mellon-University. We establish that the Cauchy-Dirichlet problem for

degenerate —pa_.raboii‘i: systems:of-the form

(1.2) —a(u) V. A(z,Vu)+/ B(z,s V,U) vds>f, i€ Q,

@.b) A%b'(u_)e 6”:!’;’3"(2; y,VyU)3 F, v €,

(1c) B(z,y,V,U)- u+p(U(z,y,t) —u(z,t)) 305 y€l.,

is well-posed; Here- 'is a:domain in R® andor each value of the macro-

variable G Q) is specified-a doma.m Q, with: ‘boundary for the micro--

va.rlable y € Q ‘Each of a,b p is a.maximal monotone graph These
graphs-are not necessarily strictly i 1ncnasmg, they may be piecewise con-
stant Q;-‘mulftr—‘valu:ed. The 91hpt1copferator§-m {(1.a) and (1.b) are non-
linear in fixe*»gra&iqnt of degree p—1>0and g=1 > 0, respectively,
with 1 + -2 P, so-some specfﬁé degeneracy is also permitted here. Cer-
ta.m:ﬁrst order spat-;él—-deiivatives can be-added to—(—lﬁ a) and (*1 b) with no

mequahtles, cafi be‘treatéd: snrmla.rly A partlcular example important for

* Thls work Qas supported by grants from the Natlonal Science Foundation and the
O‘i‘xce of Naval Research




applications is the linear constraint
(1C') U(Viryﬂ) = u(x,t) , yel:, 7€

which themxeplace's;(ic). Thezsystem;(‘i):with_;[é('.g)~= 1|s]72s is called
airegu,lariz,éd’ micro-structure model, and- (1.2), (1.b), (1.c')-is the corre-
's'pqnding,matched micro-structure modﬁ—f in whichz(formall}') € —+0. An
‘example of such a system is:a-model-for'the flow-of a fluid- (liquid or—gas)
through a fractured-medium. In such-a coritext, (1.a) prescribes the flow
on the global scale of the fissure system and (1.b) gives-the-flow on the
‘microscale-of the individual cell-at a specific point-z-in the fissure system.
The transfer of fluid-betweén the cells and surrounding medium is-pre-
scribed by:(1.c) or (1.¢'). A major objective is:to accurately model-this
fluid-exchange between the cells-and fissures.

Systems of the form (1): were developedtin [10], [11], [3] in physical
chemistry as models for diffusion through a-medium with-a prescribed
microstructure. Similar systems arose in soil sciengit;; 12], [6] and in reservoir
models for fractured’ media 4], [7}. By homogenization meti;ods such
systems are obtained as limits-of exact ‘micro-scale models,.and then the
effective coefficients are qomPu‘:téd explicitly from local mateﬁalv properties
{13}, (8], [1] _An eidéterice-ui;iquenws theory for these linear problems
which exploits the étrong:para;bolic structure of the system' was given in
[12]. Oné can altefnati;rely eliminate U and obtain a éingle functional
differential equation for u in the simpier-space L?(Q2), but the structure of
the equation then obstructs the optifnal parabolic type results [9]. Also
see [5] for a nonlinear system with.reaction-diffusion local effects.

We begin by stating and resolving the stationary forms of our systems.
Denote by vz : W9(2;) — L%(T;) the trace map which assigns boundary
values. Let T; be the range of 7,; this is a Banach- space with- the norm

induced by 7, from W19(Q.). Since T, is smooth, there is a.unit outward
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normal v;(s) at-cach s € I;. We shall denote by ‘-'E'y the gradient on
T 19(Q,)-and by V the gradient on 117 (R).

In order to ;prescribe a-measurable family of cells, {Q;,z € O}, let
Q C'Q x R" be a given measurable set;-and set Q; = {y-€ R" : (z,y) €
-Q}. Each: ), is measurable in IR™ and by zero-extension we identify
L9(Q) — LI(Q x R™)-and each L(2;) — LI(R"). Thus-we obtain from

- above

L9(Q) = {U € LY(Q, LY(R™) : U(z) € L(Q;) , ae. z € Q} .

‘We shall denote the duality-on this Banach space by

U,®) L = L { ‘/‘; U(z,y)Q(z,Ay)dy}.dz , Uel¥Q), ®e L"'(Q) .
The state space for our problems will be the product L!(Q) x L(Q).
Note that W9(f2, ) is. continuously imbedded in L%(S2,), uniformly
for z:€ Q. It follows that the direct sum
W= LI(Q,WH(Q,)) = {UeL(Q):U(z) e W(R,) , ae. z€Q,

and /n 100 d < 0}
is a Banach space. We use-a variety of such spaces which can be con-
structed in this manner The Banach space Wol” () x Wy will'be the en-
ergy space for the regularized problem (1). We assume the trace-maps 7 :
W4(Q,) — LI(T,) are uniformly bounded. Thus for each U € W, it fol-
lows-that the distributed trace ¥(U) defined by v(U)(z, s) = (1:(U(z))(s),
s € Ty, z € Q, belongs to LY, L*(F.)). The distributed trace y maps

_ W, onto T, = LI(Q, T, )-— LI, LI(T:)).
Denote by X the map of L9({2) into-7, given by ,\v(:r) =v(z) -1, a.e.
z € Q, v € LI(N); Ais-an isomorphism of LY(2) onto a closed subspace of
T;- Tne dual map X' taking T into LY () is given-by

No) =900 = [ 1) -2(e)dz, g€ Ty, e ®,

o
o




so. we have A g(z) =¢.(1;), ae. z € Q..
We consider elliptic differential operators in-divergenceform as real-
izations :of monotone operators from Banach spaces to their duals. The

‘global diffusion operator A Wg P(Q) = WP (Q) is given:by
Au(v) = /Q ZZ(z., Vu(z))Vo(z)dz , u,v € WiR(Q) .
Similarly-define for each z €:Q
Bouto) = | B Gyol)Intdy . woe WH(@L)

Also, we shall denote by B : W, — W; the distributed. operator con-
structed from the collection {B; : z € Q}-by A

BU(z) =B,(U(:c)), | e T€ Qif?, Uew;,
&nd we note that this is equivalent to
BU(V)= / B.(U)V(z)ds;, U,V eW,.
o ! _

The:coupling term in our:system will be given-as a monotone graph
which is a subgradient-opérator. Thus_i assume.7n : R — R* is convex,

continuous and bounded by-C(|s|? + 1); Then by
w(o)s [ [ miloes)dsde,  geLr(@29(.)
. aQ Itc .

we obtain-the.convex, continuousita: LI(Q, LY(F;)) — R*..

For the case of the degénerate stationary problem corresponding:to:

(1), we:obtain the-following result.

Let i R —R* and & R — R* be-convex and continuous; with
0(0) = &(0) =0, and assume

elsy<C(sl*+1) , ®(s)ZC(ls)? 1), se R .
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For each pair f-€ W=17(Q), F € W, there-exists a solution of
(2.2) w e WyP(Q): at A(w) - N(p) = f in WHP(Q)
(2b)y  UeW,:b+BU)++4(w)=F in W,
2¢)  pedmU-Xu) in LY (QL7(R)); and
(2.d) e €dp(u)in LI(Q)., bedIU) in ‘L"(Q.)' :
For any such solution:-we ‘have 7

/(; b(z,y) dy+Z‘ p(z,s)ds = (F(z),1z) , e, z’e‘Q'.

Next we restrict -our 'syétem to appropriate ;products of L™ spaces.
The ‘Hilbéft space case, 1 = 2, Serves.Tiot only as a convenient ;séuting
point but leads to,the generahzed accretive estimatés we shall need for the
singular-case of (1) in-which-a or bis not only nonlinear-but miulti-valued.
The stationary-operator for-(1) is shown tobe m-accretive in‘the L! space,
s0 we-obtain a generalized solution in-the sense of the nonlinear semigroup
theory for general Banach spaces. As an intermediate step we show the
special case of a = b-= identity-is resolved as a strong- solution in every

L" space, 1 < r< o0,.and also in-appropriate dual Sobolev spaces.
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NODAL SUPERCONVERGENCE AND SOLUTION ENHANCEMENT FOR A
‘CLASS OF FINITE-ELEMENT AND -FINITE-DIFFERENCE METHODS*

R. J. MACKINNON{ AnD-G. F. CAREY?

Abstract; A class of finite-clement mcthodé for elliptic problems is shown to exhibit nodal superconver-
_gence in the approximate solution, and somé-cquivalence properties to familiar finite-difference operators
are demonstrated. The superconvergénce property is-exploited:in a Taylor series analysis to demonstrate
Gauss-point superconvergence for the derivatives of the approximation. A post-processing formula for the
derivative at the nodes is constructed"and shown to exhibit superconvergence. The nodal superconvergence
property can be exploited. recursively to:further enhance the finite-element or-finite-difference solution.
Supporting numerical studies are givén.

Key words. finit¢ element, finite-difference, supérconvergence, post-processing
AMS(MOS) subject classifications. 65-L60, 65-N30-

1. Introduction. In this note we consider a Galerkin finite-element approximation
of the Dirichlet-problem for-the equation Lu-= f in'§). Here {) is a-union of rectangular
subdomains, L is a second-order elliptic differential operator with smooth coefficients,
and u is:assumed to'be sufficiently smooth: By introducing an appropriate integration-
rule for:zelement quadrature we show that the:Calerkin approximation.uy, defined on
asquare mesh of piecewise bilinear elements; is equivalent to a familiar finite-difference
approximation of u. Discrete: umform error estimates for this difference approximation-
are known (Bramble and Hubbard [1]). These estimates 1mply that difference quotients
of the efror have the same order of convergence- as the error itself; i.e., O(h’) for the
bilinear:¢lement. It follows that this:nodal-superconvergénce property-holds- for the-
standard-Galerkin approximation with highér-order (or-full) integration. We use this
fesult t6:-prove new- ‘superconvergence results and show how simple and accurate-
superconvergent post-processmg formulas -for the solution. and- derivatives can -be
derived-using Taylor. series-éxpansions. Although: the -formulation-and:analysis pre-
sented here is for problems in-two dimerisions, the results- apply to- problems in one
dimension as.well, and-extend directly to three: d:mensxons.

2, Formulatlon and analysis.
2.1. Nodal solution superconvergence. Consider the boundary value problem

1o ouy. 9 ou
t) Lu=:‘;:|25;<a,5;)l+ay( a y)]+b,ux+b2u +eu=f
‘in the unit square Q = (0,:1) x (0, 1)*with-Dirichlet-data
2) u=g on .

Here we assume that-a,’b, ¢, and f are smooth, and L is uniformly elhptlc inQ.
The Galerkin finité-element approximation to (1) is defined to'be uy, €- H" satisfying
the essential boundary condition,-and such-that

(3) B(uy, vy)=(f,.v)

" *Received by the editors December 16, 1987; accepted for publication (in revised form) June 7, 1988.
- tDepartment.-of Acrospace Engineering and ‘Engineering Mechanics, University-of Texas, Austin,
Texas 78712. This research has been supported in part*by the Office of-Naval Research.
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for-all v, € Hi  H)(), where-(+,+)-is'the L*(Q) inner product-and B(-,-) is the

bilinear functional
4) B(w, ¢)= J Lay Wt + aywypy, + (bywy +byw, + cw)¢r] dx dy.

Now-consider & uniform:partition:of () into-square elements-of size h-and take
H"(Q) to-be- spanned by -C° piecewise-bilinear-functions-defined-on this partition.
Approxnmatmg the -integrals-in-(3) by. a-suitable-integration rule applied over each
element, we' get the approximation By (tin, v,) =( £, vn)n for-all v,e H k. The resulting
algebraic system is

(5) Bu, =1,

where the precise forms-of B,.and f, depend-on'the particular integration rule used:
For clarity of exposmon let us first:consider:the case where coefficients a, b, and

¢ are constants, and a:(2 X 2) trapezoidalintegration rule is-used to-evaluate-integrals

in-(3). Accprglmgly,,evaluatmg the coefficients in-(5), for typical interior node point i-

at‘(x;, y;) with:test function v,;, we obtain

By, (up, vy) = —{ay[un (i +h; yi) = 24 (xi, i)+ un(xi= b 1))
+ ayLuy, (xi, yi+ h) = 2u, (i, i) + un (x5, yi— h)]}

(6)- b

+h ‘21 [un(x; +h, Vi) —up(x;—h, ¥)]

+’hv%%[uh(xb Yi+ h) = w(xi, yi — h)1+ cu, (x;, yi) h?
and”
) _ (s vuidw= f (xi, yi) b2,

For:this case; we:see from (6):and (7).that (5) is equivalent.to the five-point central

difference approximation-to.(1).

Bramble and Hubbard {1] have shown that, fora solution-u_of (1)-having bounded
fifth derivatives, the gridpoint error e; = u(x;, y;) — u(x;, y1) for the five-point difference
approximation satxsﬁgs

(8) e = ¢(x;, y) >+ R(x;,.y;; h)b®

where ¢ has:LipschitZz continuous second derivatives, and R is uniformly bounded in
Xi; Yi» and h. It follows-from (8) that-the solution to this- finite-element problem-(5)

‘has-gridpoint-errors of order O(h?). It should be emphasized that.this estimate is a

gridpoint result for the discrete problem, and is-of the same order as the global L?
estimate usually encountered in-finite-element theory.

‘Remark. 1f the domain discretization error is zero (as-assumed here), then it
follows directly from'the proof in Bramble and Hubbard thatmax,, ,, |[R(x, yi, h)| = Ch,
constant C, so-the final term in:(8) is-actually O(h‘)

In (8)-¢-is the solution to the. auxlhary problem

Ly =7(u) inQl,
$=0 on-a3€}
with 7°the truncation error. In-particular,
(10) -By(u, v) = h*Lu(x;, y;) + h*n(u) + O(h®)

)
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where 7(u) denotes 7(u) evaluated at interior gridpbint' (i, y1). For -trapezoidal-
integration-r(u) corresponding to (6)-is

(171)5 7(u)= _/‘l_li [dluxxxx—'*"azuyyyy —2(b eyt bz‘,‘yyy)];

According to (10), the discrete approximation given in (6) and (7) has local truncation-
errofs- of order .O(h*). On- dividing-by h? we seethat the -differential- operator is
approximated-to a local accuracy of order O(h?). Even'if a more accurate-quadratureé-
scheme is-used-for integrating (3), O(h*) truncation errors remain. Their precise forms
depend on-the integration rule used. It_follows that the estimate in (8) gives the best
possible rate for the nodal solution-error irrespective -of the-increase in-quadrature
accuracy: )

This.conclusion-also holds for the case of smooth variable coefficients; since their
variations only-introduce O(h*) truncation errors.(See the Appendix for an example.)

2.2. Derivative superconvergence points. -Consider-first the problem of: derivative
calculation from the bilinear finite-element nodal interpolant 4, of u. Simply differen-
tiating the-expansion' on element=Q}., we have

(12) us(55)= % (5,

where u;.are the interpolated nodal values for-{,,.4; are the-element basis functions;.

and-X, y is an arbitrary point in the element.

‘Next, we-introduce Taylor série -expansions-for wy=u(x; y;)-about.x=%, y=y

with .8 =x;—%, 8] =:,—7 to obfain

(13) = u(x, yy) SU(E F)+ u (%, 7) 85+ (%, 7))
“ Fe (%, 7) (87721, (%, §)(8])/ 2! uy(, 7)8] 6]+ -

‘Using (13) in the right sidé-of (12) and regrouping tefms, we:have:

=3 ‘pjxuf— [%42 @x(af)zl’axx
J=1 cj=1 J
(14 o
|3 5, e, £, ot | ¢ 00

-where for. notational gionvenienc{é i =u(X, 5); i, =u (%, 7), Y= ¥;<(%, ), and so_on.
A similar expression holds.for . )
Now-the derivative of-the approximate solution- u,.at X, 7 in-€Y,.-is

4-
(15) ﬁr.xf—‘jz‘ Upys -
Subtracting (15) from (14)-yields the error in the derivative

) 4 T1 s il
& = Z e}‘pjx - ['i_l X ‘I/jx(sf)z:l 7
J= !t
(16) i -

14 - I I - ]
“[5 z *”f*‘sf)'] ﬁw-—.[ z ‘1’1x5f5f]'7xy+ (k).
L& ju: J=1

When we -introduce nodal-estimate (8) for ¢; and use the fact that derivatives and




-order-terms are-zero or collectively-cancel. On-examination; we find-that coefficients
-of i;,-and-a,, are zero-for alljff, 7in'Q., biit the coefficient of i, is zero for all-p=with
% = (x,4x,)/2. Therefore, -u,, is superconvergent-on the line bisecting-the horizontal

Replacing-a,u,,(x;, y:) in (19) using differential equatxon (1) and then introducing.the
:fellowmg_ difference formulas:for.a,, uz, u,, and- (azu,),
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hence difference quotients of:¢-are bounded, the:first term on the right-in.(16) satisfies

= O(h?).

4
E ‘sbjxej
J=1

This implies that (16) will"be-an O(h?;):app,rgximat‘ion,,provided thg're_maining’éﬁr__st-

sides-of*(Q),: Similarly, u,,, is- O(hz) along the line:bisecting vertical sides of {),. Hence,
the:centroid (Gauss point)is the superconvergent: point for- both uy,-and Upy.

2.3. ‘Nodal derivative extraction. Now consider the calculation of derivatives (flux
components, stresses) at interior node-point x;, y;. For a -solution- u. of (1) having
sufficient smoothness in the interior of {), Bramble and Hubbaid [1] prove the following
estimate:for the equivalent-finite-difference scheme:

(17) Dpe(x,, y)| S callelq, + O(h)]

where D} is an nith order difference quotient-having O(}Szg):trunéati@i_x,error,,c,,:is a
constant:independent of -h,-and lelq, = max,, ,, |e(x;, y;)|: For the problem considered
here we:have, according to (8),

lela, = O(h?).
Thus, (17) becomés
(18) | Dhelx;, yi)| = CH?. .

This result-can.now-be used:to derive-a superconvergent-approximation for. the-flux
components- g5 Azl - (and:hence dcrivatives if desired) at:node point x;, y;.
A:Taylor seriés expansion for u(x; =}, y;) about (x;, y,) yields

(19) al“x(xh)l)="‘[“(xh}’l) -u(x;— hyn)]+ aluxx(xi:yi)+0(h2)

ay(xi, yi) = a.(x hy):,

ayx(%; 1) = s -+ 0(h),

) = 22 y’?f::("—‘!." BID.L o),

w5, ) = IR ME N ey
(agty (), = 2L I ), )

(az(xh yi) +ay(xi, -y — h)).
2h?

[u(xili yl) ‘u(xi’ Yi— h)]+ O(hz)’
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we:-obtain
() = XV =R 13, ) (=, )
+(az(?c:,y,+z;+a?(x,, y,))[ R
(az(xu yi) + ay(x;, )’l h))

(20) = ah [u(x;, yi) = u(x;, y:= b))

+"‘[“(xh)’1) u(x; = h)’.)]'*' 2 Tu(x, yith) —u(x; yi— h)}

+ D ulr, 3= f(x, 3)+ O,

Note-that (20) is an O(h®)-difference formula-involving-nodal values-of the-exact

solution . On introducing-the finite-element approximation u, for u on-the right in-

(20);.we define the approximation-for a,u.(x;, y;)-

au¥(x, y)= (a.l‘(/" »): +2‘;:(x’— -h, y1));

+ (a:(’fi. yit }‘3'+ a;:(xh yi) Lui(x,, y, +h) = uy(x;, y)) T

Lun(x;, y.) uy(x; = h, i)}

@ (oalo y) ¥ i "”[u,.(x;,y,) w3~ W)

+_[“h(xh.}’4) uy (O = h}’:)]+ [uh(xc’yl+h) un (X1, yi= h)]

‘+'C2_h up X, y[)—;gf(xlg .}’1)
“Subtracting (21) from:(20) and using (18), we find that (21)-is a superconvérgent O )
flux approximation.:(For a related study of derivative approximations see-MacKinnon
and"Carey:[5].)

Finally,:let-us use this result.to-analyze a-finite-element-projection technique for
-flux-post-processing. This techniqueis based on the integration-by-parts procedure in
the finite-element integral statement, from which we-define the projection.relationship
for-a;u¥:

(22) [ ayuf vy 4S'='[ (@ Upx Vpie + QgUpy Uty (b » Vuty + cu, — fvy,) dx dy
5 n,

where 5, is deﬁned by element sides connecting gridpoints (x;, y; - h), (x;, y1), (xi, yi+ h)

-and (, represents the two:element patch-defined by gridpoints (x;—4; y;), (x;, »),

(x:,y.+ h), (x;= h, yi+ b), (%;, yi= h), (x;~ b; y;— h). This approach has been examined

.in_one dimension by Wheeler [6]; Dupont [4], and-Carey [2]. In two-dimensional

numerical test cases the method has been demonstrated to yield an O(h?) approximation.

to thé nodal flux- when a,ul.is assumed to be pxecew:se -constant over s; (Carey, Chow,
and: Seager [3]). Indeed, if-we intégrate (21)-using the trapczondal rule; as-described
inthe-Appendix, then the resulting discrete formula for a,u¥ is identical to (21). This
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-then confirms the observed numerical-convergence rate of O(h?). If:a more accurate
quadrature-scheme -is used to-évaluate (22),-the resulting differerice formula-is, in
-general, _different from:(21). Howéver, a-simple Taylor series analysis confirms-that
the formula:is O(h?)-accurate. '

3. Nodal-solution:enhancement. In this séction we apply the results-obtained in
‘the foregoing-analysis and formulate a new scheme to conipute an accurate approxima-
‘tion ef tothe gridpoint error-e; =u(x;, ;) — u,(x;, yi). This approximation may:then
‘be used to:improve u,-and, moreover, increase the asymptotic rate of convergence of
-u, and its-derivatives. We point out-that although the formulation -presented here is
for problems in two-dimensions, itincludes the-one-dimensional case by simply setting
_ -y-derivatives.equal to-zero. )
~In the:interest of-clarity, we restrict our-analysis to thé constant coefficient case
described ‘by -(6)=(11): The exterision to other. cases involving different quadrature
-schemes and variable:coefficients is straightforward in view of our previous results.

-First-recall (10) and (11):

«(10) Bi(u, vu) = h*Lu(x, yiy+ h*n(u) + O(h°),
;(:l 1) T(il) == 'ili[aliugoax + AUy — 2(b| Usxx +‘b2u)-;-y)l;

Now {rom estimate (18); since u, is O(h®)-accurate at-the node points, any nth-order
-difference quotient -Dj:0f u,, also converges to'the:exact value D"u at'a rate of O(h?).
Therefore, at-any interior node point.i, 7(u) can:be rewritten using difference quotients
Diuy, as '

(1) = - 5[ @ Dty + az Diyyitts, = 2(by Dty + b, D35u,) 1+ O(h?)
= 7a(up) + O(h?).

(Note-that:since the fifth derivatives-of .u.are-assumed bounded, then ,(u)-at:node-
-points on boundary.3Q-can also be approximated to O(h?) accuracy by simply-using
.an O(h?) extrapolation-to the boundary.)

Next,-interpolate the nodal values 7;(u).in the piecewise-bilinear basis as

(23)

(20 ()= T 7))+ O(H).

where ‘N is:the number of node points.
Introducing (23) in:(24), we have

N 2
(25) m(u)= .Zl my(un) P (x, y) + O(K°).
=
Replacing 7;(u).in (10):using (25), we-have
(26) Bh(u’ Uhi') = thu(xir ,V-) +:h.‘7hi(uh‘)+‘o(h()’)'
Using-(26)-in-place of (10),-the estimate-(8) now has the form
(27) &= ¢*(x;, y)h*+R*(x;, yi, h) 0

where ¢* satisfies the auxiliary problem

] ~
Lo* =,{uy) =}Z| my(un)y(x, ) in Q,

(28
(28) ¢*=0 onoQ.
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The objective now is'to.construct a finite-element approximation ¢3 to ¢*in (28),
-and’then use this-approximation-in.the_leading term on the right of (28):to obtain an
accurate correction-to the-nodal solution.

‘First,-let us assume that we-have already computed: u, from_(5) using LU fac-

torization and. have:saved-the computed-matrix-factors. The Galerkin:finite-element

approximation to(28) is as:follows. Find -¢%* e H" such-that

(29)-- B(¢F, va) = (7n(upn), va)

for ali v,eH" < H}. As before; if we evaluate-integrals in (29). using the (2x2)
trapezoidalintegration-rule.we get: ’

(30) Bh‘bt:"'h(“h)hz

where 7,,(uy) is defined in"(23) and B,(¢¥, vy)-is.analogous to-(6).

Since the matrix factorization-of B, is-already:-given from the:previous calculation-

of u,, the-approximate function ¢3 in_(30) can be computed efficiently once 7,/(u,)
are computed (for the Dirichlet-problem- 7,(u,)=is needed at-interior points only);
7i(uy, ) is-easily coniputed using one-dimensional: difference formulas. For example,
we may wrife

k+1 n

Du= % <

=‘Dh£u+0(hk+l-h)a k g,n, f:x{y

VE)u(g)+O(h™).
(31)

whete u(¢)-are node point values of function u; and ¥; are Lagrange polynomial

shape functions of:-degree. k. In-particular,-for-a second-order-(O(h?)) approximation.

to. d“u/dx ‘n=4 and-k=5. Note:that (31) can-be used:to approximate- d*u/dx* at
interior nodes near'the boundary. For this case-(31)-is simply-azone-sided difference
formula involving interior-node-point values-of.u-only.

Solution:-¢¥ from (30) will.approximate ¢* with accuracy O(h”) at all-node
points, where p depends on the smoothness of solution &-to-(1). Note-that 7 in (24)
is C"in-view of the assumptions on-u. Moreover, 7, in- ('78) is C° by construction so
¢*€:C? and-p=1. Replacing ¢* in-(28) with ¢F,-we have

ef = 4’;':(9‘1: .Yf)hz'*' R*(x;, .)’l,=h)h3+ ,O-(hzﬂ)

32
32) = ¢Eh2+ O(h**?)

since -R* is O(h).

This important:result implies that we-can compute rniode-point errors e} having
at-least O(h®) accuracy, and O(h*)-accuracy (p =2) for.sufficiently smooth solution.
An immediate consequence of this-result.is that we can also increase the accuracy of
our approximation-u, (and its derivatives, if desired) from O(h?) to at least O(h®).
That is, the enhanced gridpoint value obtained-by adding the-nodal correction-ef
becomes

(33) uk =+ e¥.

The solution.enhancement procedure-may be summarized as follows:

(1) Solve the finite-elément problem B,u, =f, using sparse LU factorization and-
save matrix=factors. g

(2) “Process” approximation:u,-and:form-associated vector 7,(uy). Then,.using
matrix factors of B;, solve-auxiliary problem B,d¥ =7,(u,).
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(3) Compute-approximate node point-error correction
eF= i, y,)h2
and-hence the *‘enhanced” solution
uf=uj;+e¥.

3.1. Numerical.examples. ‘Numerical_test studies have.been made to demonstrate
the-effectiveness- of the nodal-enhancement post-procéssing procedure. (For results
related to the application of post-processing derivative formula-(22) and related
formulas, .we refer-the readér to. Carey [2], Carey, Chow; and Seager [3], and MacKin-
snon-and Carey- [5] )

-In the first test case we consider the-two-point boundary value problem

=ity F U F 1=
u(0)=u(1)=0

where f is constructed-such-that the analytic solution iszu = x(1—x)(1+x)*.

‘We take a sequence of uniform mesh refinements with-h = £, 1%, 35, and 5. Numeri-
cal integration-is'performed-using the-trapezoidal rule,.and derivatives u,, and i,
‘in_7-are approximated to order-O(h’) and O(h?), respectively, by six-point difference
formulas. A six-point formula for u,,, was used because itis computationally convénient
to- snmply differentiate-this formula and use:the result to- approxlmate Uscx -

] 0<x<l,
(34):

‘Node pointerrors E;, E¥’ for approximations uy; and enhancementu¥are presented-

in-Table 1. Note:the substontial inicrease-in-accuracy and asymptotic-rates of -conver-
gence:; afforded by-the enhancement procedure.

‘Next:we examine three:approximations-to u, at x =1. These approximations:are:
the standard O(h) derivative -approximation_#;,; the post-processed derivative u¥
givéﬁ'by (21); and‘the-enhanced derivative-denoted- by .u¥* -and given by an- O(h*
six-point difference formula operating on enhanced solution u*. Results are presented
in Table 2. Approximations i¥*.and.u** are. O(hz) and:0(h*) accurate as predicted.

TABLE T
Node point errors E(x;); E'(x,) Jor the case b=1,
h- E(0.2)- | E*(0.2) E(O:q) E"(O.4) E(0.6)- | E*(0.6) 5(0.8) E*(0.8)
3 0.085004 :‘0.016524 0.161265 0.(}10216 0.200329 1:0.009952 | 0.162612- 70.0159:(7)6
& 0.021283 |:0.204E-3 0.040342 | 0.598E~-3| 0.050081 [°0.724E -3 0.040634 -[ -0.389E~3
216 0.005323 |-0.27E-4 | 0.010087 { 0.51E=4 [ 0.012520" }.0.61E-4 0.910]57’ 0.46E—-4
5 0.001330- | .0.18E~5 | 0.002521" | 0.33E=5 | 00031301 | 0.40E~5 | 0.002539-f 0.31E-$
~O0(h*) | ~Oo(h*) | ~0(h?) | ~O(k') | ~O(h) | ~O(h*) | ~O(K®) | ~O(h")
TABLE 2 )
Derivatives uy,, u¥, anid-u¥*ar x = 1. The exact derivative is u (1) = ~32.0.
¥ e u urt lagmund | femul | lugmu
¥ —14.303480- | ~34.933828 | -31.476970 17.69652 2.933828 0.5230300
& ~22.034701 =32.736437- | -31.982434 .| 9.965299 0.7364370: 0.0175660
% —-26.716385 | —32.184295 ~31.999583 5.283615 0.1842950- 0.417E—3
& -29,280084 ~32.046085 ~31.999975 2.719916 0.0460850" 0.25E-4
~O0(h) ~0(h%). ~0(h*)

-




SUPERCONVERGENCE AND ENHANCEMENT 351

As-a two-dimensional test-problem:we take the example

(e y,) = (2=42x°)(y = y") = 42y°(x*=x").  in Q=(0,1)x(0,1)

‘with-

(35) u=0 on-oQ.
The analytic solution is the polynomial

(36) u=(x*=xN(y=p").

Node-point results for-a sequence of calculations- on. uniformly -refined meshes of
h=1,7, and 35 are given in Tables 3-5. Again, the observed rates of convergence
corroborate our analysis.

Conclusion. By a suitable choice of quadrature rule the finite-element approxima-
tion for a two-dimensional elliptic problem has been. related to a familiar finite-
-difference approximation. Nodal superconvergence of the solution then follows from
an estimate of finite-difference theory. Moreover, any nth order difference approxima-

‘tion-having Taylor series truncation error of O(h?) at a node-point converges:to the-

exact-value at a:rate of>O(h?). Therefore, accurate derivative extraction-formulas can
‘be derived. directly using Taylorseries-ideas.

TABLE 3
Node point-errors E(x;); E*(x;)-along x=0.8.
h. | E(0s8, o.2)f E*(038,0.2) 5(0.859.4) E*(038,04) | E(0.8;0.6) E*(0.8,0.6)| E(0.8,0.8) |E*(0.8,0.8)
} | 0012138 | 0.004074 | 0.023837 | 0.005127 |-0.032477 | 0.006333 | 0.030038 | 0.006824
#5 | :0.003102 7| 0.40E=4 | 0.006087 | 0.60E—4 |-0.008275 | 0.80E=4- | 0,007625 | 0.93E-4
% | -0.346E-3|-02E=6 | 0.680E-3| 03E-6 | 0.924E-3| 04E~6 | 0.850E-3| 0.4E—6
2 ~O(hY: | ~o(h*) | ~or®) | ~o*) | ~o?) | ~o(Y | ~o(?) | ~o(nt)
TABLE 4
Node point errors E(x;), E*(x;) along y=0.8.
h E(02,08) | E*(02,08) | E(0.4,08) | E*(0:4,08)- | E(06,08) -E*(0.6,0.8)-
} | 0007514 -0.003668 | -0.017644 0.003680 0.028428 0.005004
% | -0.001982 0.21E-4 0.004496 0.22E-4 0.007233 0.48E—4
% 0214E-3 0.2E~6 0,502E-3 0.4E-6 -0.807E-3 0.5E-6
~0(h%) ~0(h%) ~0(h?)- ~0(h%) ~0(h?) ~0(h*)
: TABLE-§
-Derivatives uy,, u¥, and u}*-at (x, y)=(0.8,0.8). The'exact derivative is u;(0.8,0.8) = —0.1387215.
h g u ug* AT R R VR PR
4 0.282010 |- —0.405757 -0.155165 0.420731 0267035 0.016443
5 0.137307 —0.208948 -0.139683 | 0.276028 -0.070227 0961E~3
% | -0.0310355 | -0.146723 | ~-0.138726 0.107636 0.008001 0.4E-5
~0(h) ~0(h%) ~0(h*)
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We emphasize that since-this Taylor. series -approach rclies-only on elementary
analysis concepts, it is straightforward-to understand-and implement. Furthermore,
although this-is:not taken up here, the method can:be easily applied to higher-order
elements and problems in-three dimensions. Also, derivatives can be extracted from
finite-difference:solutions in“the same manner.

Finally, using the truncation error-in-an auxiliary.problem the-nodal superconver-
-gence property=can be-further exploited:to enhance:the gridpoint solution accuracy.
These results-are of practical significance-in solution and derivative post-processing
and-also-for a-posteriori error analysis-in conjunction with adaptive refinement. The
adaptive refinement aspects-will be taken up in future studies.

Appendix. Trapezoidal rule and variable coefficients. For -the case of variable
-coefficients and:trapezoidalintegration, we have from (3) at interior gridpoint {

1.1y By (uy, v) =i
-where

1 - f;b; i 1 757 i
By, (un, vpi)= _[a (x,f y2)h+a (x y) [un(x;+ by yi) = un(x;, 1))

_ al(xl":yl') + al(x,,—jh, }’.‘)’

(s (x5 yi) — un(xi=h, y1)]

2h
ay(xi,-yi+h)+ ax(x;, y;) ;
QX 211 2, L6, i+ ) = s (xi, 7))
-2 (50 + 3, - )
a x,'; i +a X, - ~
-2 2; pdiT Cun (s, }’i)‘“h(x.'r),’-"'h)]}
b, ) o .
+ h;‘ (15 Y0 ) [un (X2 + hyy;) = ws (X =h, yi)]
'bz . B . )
+—h-2— (viyy)lun (6, yit B) = up (%, 35— B)1+ (i, yi)un(x;, yi)h
and
(13) Si=1(x, y)h.
For.a smooth function w,.and using Taylor’s theorem,
(1-4): By (w,v) = h%Lw(x;, .}’i) + "47:(}”) + O(hé)
where
. T(w):‘-L Q) Wirxx T Q) W T Qo Weee + By Wy
(1;5) |2[ 1 Ws, 1x Wy, 1xxWex T @y

+ A3 Wy F Qry Wy By Wy F By Wy = 2( by Wy bawgg, )]

From (1.4) and (1:5) we see-that variable coefficients-produce additional- O(h*)
terms in 7. Hence, the accuracy of (1.1)-remains O(h*) and the results demonstrated
for.the constant:coefficient case extend directly to the case of variable coefficients.
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Natural and: Postprocessed
Superconvergence in Semilinear

Problems.

S.-S. Chow,' G.F. Carey,* and R.D. Lazarov®
'University of Wyoming,:Laramie, Wyoming *University of Texas at
Austin, Austin, Texas-78712 and-*Bulgarian-Academy of-Science,

‘Sofia, Bulgaria

Superconvergence-error estimates are established for a class:of semilinear- problems
defined by a linear elliptic-operator with a nonlinéar forcing term. The analysis is
for rectangular biquadratic elements, and we prove superconvergence of the de:
rivative components- along -associated lines through the Gauss-points.. Derivative
postprocessing formula-and-formulas for- integrals-arealso considered and similar:
superconvergenée:estimates-proven.

1. INTRODUCTION:

In:recent years, much éeffort has been focused on superconvergence phe-
nomena in the numerical solution of differential equations. In the context

of finite. eélemeént-methods, it was observed that under certain conditions-

the-convergence rate-at specific points. orlalong specific-lines is-higher than.
the global convergence rate of the approximations. These:phenoména:may-
occur-naturaily or “artificially” from postprocessing procedurés. For linear
problems, an: extensive review on- superconvergerice- may-be found in-the
paper by- Kfizek- and" Nelttaanmakx [1}: For nonlinéar problems, few results:
are available, even though numerical.evidence strongly suggests that most
of the results.for the linear. problems. may be carried over to-reasonably- well

‘behaved -nonlinear problems. (See Chow -and- Lazarov [2], Wheeler -and
‘Carey 31 and Carey-et al. [4].)

In. this. paper, -we “identify. a class of -semilinéar problems for which.
many superconvergence results remain valid. -In- particular, by restricting
ourselves:to biquadratic-elements -for simplicity, we -establish superconver-
gence of approximate derivative components-along.lines throngh the Gauss
‘points and-superconvergence of the gradient.at the- Gauss-points. We also:
prove:superconvergence of the. boundary-flux and linear-functionals -ob-
tained from certain postprocessing procedures:

The standard notational-conventions for-Sobolev-and Hilbert:spaces-are
employed-(e.g:, see Showalter [15]). For a givéen domain {,.the Sobolev

*Please-address correspondence to -Dr. G.F. Carey, Department-of. Aerospace
Enginéering and Engineering Mechanics, University of Texas at Austin,- Austin,
TX 78712-1085.

Numerical-Methods for Partial Differential Equations, 7, 245~259.(1991)
©°1991-John-Wiley & Sons, Inc. CCC-0749-159X/91/030245-15504.00
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space WP(Q), k = {0, %1,£2,...}, p-€ {l, ®], is-equipped-with: the usual
norm [k and seminorm || . We-shall-omit.the-index:p when:p = 2.
and-write H* for W*? and H for H}(Q). the subspace-of H'(Q):with ele-
ments vanishing on the boundary-of Q. Since .the -distinction- should be
clear from the context, we use (-, -)-to denote-hoth the:L(Q):inner: product
and the H™'(Q) x H3(Q) dualitypairing.

For the present superconvergence analy51s, we restrict the-domain Q
throughout to be a'subdomain of R? consisting of a-union-of rectangles with
sides parallel to the coordinate axes and‘let-9() denote:the-boundary. We
specifically consider the class-of semilinear -boundary-value problems de-
fined by '

(e ) 0 (g
Lu = —ax(a(x’y)ax) = ay( (7)’) ) f( u), - (1)

u =:0;. -0n=851

where (i) a, 8 are uniformly- Lipschitz-continuous -in :Q;-(ii)c, B-are -uni-
formly bounded above and below by some: posmve constants ¢;- and:cy, re-
spectively; (iii) f(u) is. a .monotonically--decreasing Lipschitz continuous.
function of 4 € R such that for all yw in

[Fw) = FO)Lw = v]-= y]w-= v (2)-
with ¥ > 0;and (iv) for all yw in H, there exists a constant-8:>-0 such:that
colw = vit = vlw = v} =.8lw =-vfi. )]

Using the Green-Gauss -identities, the corresponding-weak statement of
egs. (1) and (2) becomes: Find u.€ H-such-that

a(u,v) = . f(u),v]’ for all vE€ H, @y

where a(u,v)-= fln(afl & + B55) dxdy. Under the- assumptions- (i)=(iv)
following eq. (1),-it is easy-to vemy that the energy functiona!-associated:
with a(u,v) is strictly convex, and, thus the-existence and-ur:iguéfiess of t'e
weak solution to the variationai-problem (4) is guaranteed

To construct-the finite element spaces, we first partition: (Y with rectar -
gular elements whose sides are-parallel to the coordinate:zaxes: Ve-assume
that this discretization 7;, is.regular [6], with:the parameter /-denating the

‘maximum diameter of the elements in T, and satisfies. the :inverse ‘hy-

pothe.,xs hmin = Ch (throughout this-paper,-C is taken as:a geneFic coniant
and:is- mdependent of h). Introducmg a-local polvnomlal ‘basis-of ‘degree k
on each-element and imposing continuity across element-boundaries, we
define ‘the standard C° Lagrange piecewise-polynomial -finite element
space’ S C HYQ). Let S¥ denote the subspace of functions-in -S* “that van-
ish on 8Q. The finite element approximation-u, € Sk of eq..(4) is obtaine:,
by solving

<

a(unyvi) = (f@un)yvs) for all vyin SE. (5)
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e Tera——

‘Using the idea of afi:ellipﬁ;icvprojection;opergtpr P<on H:defined.by-
a( ~ Puy,)-= 0 for.all-v, in S, (6)

Noor and“Whiteman:[7] showed that the global energy error estimates:for
thefinite-element approximation of degree k defined-by eq.«(5) are similar
to those obtained from standard finite element:theory for linear problems,
ie.,

e = vl = Crffeer. )

These global estimates are-optimal: However,:for linear problems, it has
been observed in practice that the finite e]ement solutions:may achieve-a
higher order of accuracy O(H**"-in the gradient at certain-Gauss points.

Forlinear-problems in one dimension-this problem, as well as nodal conver-
gence of the solution, has been extensively investigated. In two dimensions
this: property for thé derivative -was shown to hold by Oganesjan and
Ruhovec (8] and:Andreev and Lazarov-[9]for Jinear and quadratic:triangu-
iar-elements, respectively, and by Z1amal[10,11]-and: Lesaint and Zlimal
[{12]:for quadrilateral elements.

In numerical-studies-by-Ewing and Whieeler.[13]-and-Ewing-et-al. [14],-it
‘was Observed-that the.fespective component derivatives exhibit supercon-
vergence behavior along Gaussian-lines. :MacKinnon and Carey [15] used a-
Taylor-series analysis -to prove -this result and: further superconvergence
properties: Superconvergence along Gauss lines has aiso-recently -been
demonstrated by Ewing et-al.-[16]-for the:mixed-method. It-is of interest.to-
seesif thi.se-naturally occurring supérconvergence pheriomena are also prés-
-ent: for thé:semilinear: problems (1)=(2). Cliow and Lazarov [2] and-Wheeler.
and:Carey.[3] have performed relaied studies for-the-one-dimensional non-
linear problem.’Here, we consider the two-dimensional case and biquadratic
elements (k = 2).

Appropriate postprocessing techniques -can_also be introduced-to yleld
superconvergent results. For-example, after-thefinite-element approxima-
tion:is obtained,-an approximate flux-function may be computed from this
solution using the .integration by parts formula:(e.g., see Carey et al. 4)).
Mote specifically, recall*that-the true normal flux q is-defined on- a0 -by

"aa—u:ri +B£l-‘-n»
q=azm i

where-(n,1,)" i$ the outward normal on-a{2, and, by-virtue-of the Green-
‘Gauss identities, that ¢ satisfies the equation

@v) = awy) = (f(u),v) forall:v € H(Q), ®
-where

gv) = j qvds.
;2]

Thus, an approximate-flux g, may be qbtained;by solving

{gn,vi) = alun,vn) = (fan),vs) for all v, € S™ )
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‘Note that-for convenience-we-have neglécted the-effect of humerical inte-
-gration.in:eq. (9). The approximate boundary flux-thus computed is super-
-convergent. This result has been proved for linear triangles by Lazarov
et al. [17]-and will be shown to:hold for quadrilateral elements in the next
section. A related result is given by Douglas et al. [18]. Averaging deriva-
‘tives between elements can-also produce. superconvergent results (see [15]).

Another postprocessing-application arises in- the evaluation of - integrals
such as

F=Fu = J updx, -(10)

where u is the weak-solution of eq. (4) and ¢ is-a-sufficiently. smooth- func-
tion. An-obvious approximation to eq. (10) is then

F, -—,-’SF(u;,) =J u;.nlfdx :(11)-

‘With the aid of a negative norm estimate; we show:that F, is;a superconver-
:gent-approximation:to.F. (For-related work, seé [20].)

2. ‘SUPERCONVERGENCE AT GAUSS POINTS AND ALONG
GAUSSIAN LINES'

‘As most-of the-calculations-are-carried.out over the reférence - element
€= [ -1,1] x [-1, 1], let us first con51der the-transformation of an-element
.e'to é-and the corresponding:change of the bilinear:form a(:,3). Suppose e’is
-an-element-in T, with center:(xo, yo). If:the side parallel to the x axis-is of
length h.-and the-side parallel to the y-axis is of- length k., then-a point
{x,y) in e:is-related:to correspondmg point (£, n)-in € via the:linear-map.

, 1 1 ]
X = x(Em)= X0+ 2hd, = YEm):= yo.+ k. 12)

Any function v = v(x, y) defined on-e.may then be:transformed as-a func-
tion ¥ =v[x(&7), y(§m)] and analyzed:on-é: ‘Due to the -restrictions-im-
-posed. on: the discretization of (2, the Jacoblan is constant on-each element
with J, =:1h.k.. Moreover, since there are no.mixed derivative terms-in
‘the ongmal differential equatxon (1), we-see that

) 6u av ou- Q -
a(uy) = 2,: J *ox ox ﬁa—y aded (13)
sk ol av o v
= 3 [ oeen + i [ 5 ).

Let G denote the set of all images of Gauss points (+\/_/3 /3, 3/3)
through:thé mapping (12) to the rectangles in the discretization. Wesnow
-show- that, under appropriate: regulamy assumptions on u, superconver-
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:gence in.the finite-element approximation: for the comiponents of the gradi-
-ent occurs alongx—-coowrdi,liate lines through thése:image-points.

‘Lemma:1. Letu € H¥Q), thén for any v, € S*

la(u-= urvi)| < Ch?(luls + |ul)|valis (14)

where u; is the finite element-interpolant of u in S§.

Proof. The proof follows closely that of Zlamal [10].-Note that we have
not imposed any-boundary condition on v, and-only seminorms.appear on
the right-hand side.

We.see from eq. (13).that we may estimate a(u-= u,,vy) term by term. By

-evaluating-the coefficient aat-the centroid and-taking this as constant-on

an element, we may simplify. the:integral:terms. This implies that on.setting
& = a0, 0), we-have to-estimate

Ji é

a§d§dn;=

[[ - ab)-‘“‘—ag@avgdgdn + &Ly,

' 15y
where
L) = ]?;:a(ﬁ»;ﬁ')%didn-

Now a is uniformly ‘Lipschitz continuous; so |& —-&°| < |a]1,«,¢ and

‘hence we may bound the first term on-the right-hand-side of-éq.-(15) by

Cla)ymelfi = @ii#|Pulre. From standard. approximation theory, we have
[ =i <-Clills;z; applying this.-result and transforming back to..the
original element.e, we have the-bound

” (@ u') av"dfd < Chuls,e[valy.e. (16)

To .estimate L;(u) we:observé-that for ¥, fixed, L, is-a bounded linear

functional on 4-€ H*@), so |L|(u | <-CJ|éfls¢|04,c- Moreover, note that.if &

were a-cubic polynomial on ¢, then since d9,/d&.is a linear polynomlal of £,

we would have L(f1) =-0. (We-only needto check the cases &i = £* and

fi-= n°). Then, according to the Bramble-Hilbert lemma [6], - we may-re-
place-the norm on:# by-a-seminorm to yield

ILA@)] S Clil iz < Clule vy an

Combining estimates (16) and (17) in eq. (15),

IJ’I a(u 7u,)av;,

< CA%|ub.e + Julo.c)vale- (18)
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1In.a similar fashion we may obtain the same bound for terms-involving 7
derivatives. Thus we have

la(u = up,vy)] = ‘Z»,Cii3(|u|3,, + Juls.e)[valie

< Ch¥(juls + [eefs){vak

as stated. |

From-Lemma 1, we may derive various global-superconvergence results

 relating the finite element-approximation i, the:interpolant 1, of u in S§,

and the elliptic-projection Pu of.u-in S¢.

Lemmd 2. Lety € H%Q) be the solution of €g: (4). Then
fr— wnh < ChYulls- (19)
|Pie =1l < Ch|ues . 20)

Proof. From:-égs..(4).and (3),.-we have for alkvy.in S

la(uy = wrva)| < la(u = ug,v)| + |(f@Un) = fQ),vi)l-

‘Using Lemma-1 and the Lipschitz property of f-we.get

laGun =-unva)| < CHals + |ulolval + Clle = vallllvallo-
< Chilullillvall, 21)

where we- have assumed-the global L*-error estimate it ~ w4y < Chfluls
for-the finite-elément approximation. This is the standard result-for the lin-
-ar problem and-also holds for. the.semilinear problem, as seen-in-Section-4
using negative norm estimates.

Finally, noting that u;, = 1, € $§, and that a(-,") is- H-elliptic, we set
Vi =y — uy to obtain the estimate in eq. (19).
~ To-see that the estimate (20)-holds, we first-show that [|Pu =, =
Ch¥(Jufs + |us). Now-a(u — uy,vs) = a(Pu — u;;vy) for all vy in S§, so-by
Lemma 1 we-have |a(Pu ~ u.,v5)| < Ch¥(|us + Juls)|va). Again-observing
that Pu — u; is in' ¥, we set vi.= Pu — u; and:make use of the F-elliptic-
ity of a(*, *) to obtain the desired-bound. The estimate (20) then follows eas-
ily-by-applying-the-triangle inequality. ]

The-above lemma mascates-that both the tinite efement approximation-
of u and the elliptic projection-of-u-are exceptionally close to-the inter-
polant of u. As we shall sce in:the next theorems, the-derivatives of the
interpolant are exceptionally close to those of the.solution at-Gauss points
and along-Gauss.-lines. This can be-used to then show the derivative super-
convergence property.of the-fifite-element approximation.
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Theorem:1. Letu € H 3(0), then.the -arithmetic-mean
== Z [Vau(xg) = Viu(x,)|. 22)

where N denotes the total number of -Gauss points x,€ G, g =1,

"2,...,Ng, is'bounded by

"-or, equivalently,

Ne -
2 5|V = uny (xg)| <-Ch¥ull (24)

g=l
Proof.. :(See-also [10].) For Gauss point (x,), we-have

a(u =.u) _2_ ad —-41)({)
ox aE 7

where £ = (+\/_ 3/3, +Vj3 3/3). Now -L3(@1) =-(3/9¢). (@ - i) (&)-is a linear

E"

functional-of 4-€ :H*¢é) with |L(@)] £ |& = diywe: < Clillsé In particu-

lar, if:-i ‘were a-Cubic polynomial; -then L;(%) would vanish. identically,
which implies on-applying the Bramble-Hilbert lemma-that

ILo@)] < Cliile = Chuses (25)

and

o T
a(u - ui)l(?‘g);

A similar bound- follows for (3/ay)(u — us)(x,), and combmmg these
resuits

V(e = uy) (xp)] = CHulse 27)

at:any- Gauss-point-x, € G.
"Summing over all the Gauss points and taking the average,

N Z [V(u = u)(x,)} < N&'Ch* 2 Jufae
G g=1 3

< Ch¥u|sNg"
< Cll?lul.z,
since 2, [zdxdy = I, [[:3 hik.dEdn < Ch*Ne.
Recall that for v,-belonging to S$”, a finite-dimensional space, we have

the inverse inequality [Vilo.we < Ch™'|vilo.. Setting vy = (8/0x) (u; — un)
and vy, = (9/dy) (ur — us) respectively,-we can-use this-inequality to obtain

A= -Chlulls> (23)

< Chlue. 26)

(28)
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Ng- _
zllv(ul _’uh),(jxg‘)l = ZIV(yI - uh)lo.oo.c
g=l- - e

; @
= Ch:"'Z]V(u, - u’,,)lg,, (9)
AS CNG"lll - u;,"l.
Thus applying Lemma 2, we havé
1% 7 )
g 2 IV = ) ()l =-Ch @0

The desnred ‘botind on A is- then obtained by Writing: & — up =-u ~
u + (ur — uy) in-eq. (22)-and- applymg €gs. (28) and (30). The second:-esti-
mate (24) follows.easily from-the inverse hypothiesis-on the-triangulation: :§

Note-that-for Piswe have a similar result;:i.e.,

—’- 2 V(s — -Pu) (xp)| < Ch¥(als + Jufs)- (31).

Gg=1

This-estimate. may-be obtained by noting that -eq. (29) holds with.uy re-
placéd’by Pu and that-a bound- for {|Pu — u,jis available.
The:result in Theorem 1 may'be strengthened with the introduction of-a

‘discrete ‘L2-norm;.as:in ref. [11]: The- seminorm |v}, is defmed by

19 = { 3 ?:‘. [k‘(‘;g(m) =(—(;k)) ]}m (32)

where-{; = (+\/3‘/3 +V3/3),

This.semiriorm is: equwalent uniformly on $*to the seminorm ||,
é"lv,,[. < |v;,|;.__§:;¢lv;,h for:all v, -in- S’!; (33)
Since for v4-€_S§, the Poincare inequality implies that ), is:a norm-on S*,

we see:that [vy]s is also-a norm on-S§. With this-in mind, we write the semi-
norm:f:s as- [}

Theorem 2. Let-u:€ H Q) then
i = el < I 4
and’

|[u - Pull;.’g?Chﬂul; + lula)'. +(35)
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Proof. We first-estimate-[lu — u;l,. From-the proof-of Theorem 1, we

‘have |L(&)| < Clé)s;z, andsimiilarly:for the 7 derivative:term, so-

ot = i < ( ) C|ﬁ|%;;):

s»(;z c;z6|u|§;,)f” (36)

< Chjuls.
‘Next observe that-(u; —-us)-€ .S&. ‘Applying_eq. (33)-and Lemma 2, we
-obtain

e = unlls < Chuls
and
lur = Pull, < Ch3(juls + |uls)- (37)

The triangle inequality may now be-used to show-the-desired estimates.
This is a-stronger:fesult-than Theorem 1 since-A < Cllu: — un|. |

Next-we turn t0-investigate derivative superconvergence.along- special

‘lines. More specifically, we-show. that, as-in-the linear problem:[15] and-

also the :linear mixed finite element method:-.[16], superconvergence of

“dup/ox-and duy/dy-occurs-along lines-that-pass through.the Gauss points:
and pafallel-to the: 'y axis and’x axis, respectively.

We introduce-the following seminorms for sufficiently smooth v:
k, Yir
vl = { Zwk J ( lk,s)) ds} )
(9
[V]z {2 Ewk ,a_'(s:{k) dS} ’

where the. second’sum -is performed-over all-the Gauss:points lying on-a.
straight-line parallel to one-of the coordinate axes, Wy are the weights, and-

i are the Gauss-points-on_a one-dimensional reference element. In our

case W = 1.and-{x = =( 3/3)

Theorem 3. Letu € H*Q), then-
(- usdi < Chulls, =12 (39)

and

[u.—- Pu]}S Ch3(|u|3-+ |u|4), i=1, 2. (40)

Proof. Again we estimate [u — u;]; and [u; — us]; and then apply
the triangle inequality. Let:({,s), =1 < s <, be fixed and set Ly(%) =
(a/ag) (@ — ;) (&, 5). This.is c.early a- lmear functional.of it € H "(e) with
[L3@)-<:li = difi,w,e < Cllidfls.c. I 4 is a2 quadratic polynomial, 4, = 4 and
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L&) =-0. If-4 = £ then-d, = ¢ and-Ly(@)-= (3¢ — D, 0= 0, since- &k
are roots- of the Legendre. polynomial: 3t-1Ifd=md 0= - and
Li(fi) = 0: Thus Ls(#)-vanishes identically for cubic .polynomials &; and
once-again applying the Bramble-Hilbert-lemma, we get

ILs@) < Clihs. @y
Thus,
g Rl
el A[Ls(ﬁ)]zds’}f
1 12 «
{ scl, fiedsy @
( 172
< c 3w
ssCh’Iuh.

Observe-that:forv, € $",[v,], = ||avs/ax|o;-sinée the two-point Gauss rule
is éxact for-quadratic polynomiais. Asu; = u, € S¢, we:have [u; — upl:=
lI(@/0x) ey = -un)llo < |lus-— itsfh, so applying-Lemma 2 we-get[us — us}i <
Ch|ulls and-hence [u = i)y < Ch||ulls. Tn-a similar-fashion we may show
[u = Puly <:Ch(juls + [ufs).

To prove-the.estimate in:the [-], seminorm, we fix (s, {x), =1 = s < 1; set

L&) = (8/am) (@ — 1) (s, {x)-and proceed:as before. (B

Remark: From Theorem 3.wé may deduce that at the Gauss points aiong
‘the sides of-the elements, the tangential-derivatives-are:superconvergent.
‘Note also that-even though we have restricted our analysis:to quadratic ele-
ments in two space dimensions, these resuits may readily be extended to el-

ements of hlgher degree and-in-different- dimensions (see-also Zlamal [19])

3. APPROXIMATE BOUNDARY FLUX:CALCULATIONS-

Let us_now consider the.problem of estimating the error-of the approxi-
mate boundary.flux procedure (9). Subtractmg q.-(9) from eq. (8) we have
for all'v, € 5" :

G — quv) =-alu— unvs) = (f(u) — flun)iva). (43)

Using the global Lerror estimate fiu — tify < Ch?ufl; and the Lipschitz:
property of f; we get

[(f) = flun)va)l <-CRullfjvao. (44)

In eq. (43), we write a(u — up,vi) = a(u = uy,vy) + a(is ~ s, vs) and
bound-a(u — 1,,v;) using Lemma 1. Then applying the Cauchy-Schwarz
-inequality to a(u; — us,vs)-and invoking Lemma 2,

la(u-— ttn,va)] < CHullfvals -

L4
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Thus,

Kg = qrvid| < Crlullvill - @3)

‘Let S%-denote-the space of ‘functior)s obtained by restricting functions in-
S* to-the*boundary-3Q. This-is precxsely the function space .to -which the
approximate flux g, belongs. As 'S4 is -a subspace of L*(3Q), for -each.
g € L*(3$Y) we may define the projected function Rq in S} by. the relation

{g - Rgvs) =-0: for ail'v, in S%. (46)

Settmgq ‘qx =4 — Rq + Rq — gy in-eq.(45) and: applying eq. (46) with
vi = Rq — g, we-obtain

IRg- = qul.an-= Chlull[valli, (47)

where v, now represents the-extension of the-boundary function Rg ~-g; to
a function:that is defined-over  and is in-S”.
Tn view-of the inverse: inequality [18]

A

il = CE™vallosn, (48)
we._may combine- egs. (47) and (48):to obtain'
IRg-~ galo.on < CAClus. (49)

It‘is-not difficult to see that for-the:flux furction g,
lg= Rallosn = inflvs = gloan, va € ST
< ChYqllsr.0n (50)
< CHYul.
Thus, we:may combine these-results to obtain the following:
Theorem 4. For u-€ H*(Q), the étror of the approximate flux computed
from (9) may be estimated-by

- lig = gallosn = CHulls. (5)
N

Remarks: This result is not -entirely -satisfactory since in computations;
the rate of convergence of the flux approximation has been observed to be-
O(h’) for- blquadranc elements, mdlcatmg that the-above result is probably
suboptimal.. Note, however, that it is still a superconvergence result-since

the global rate-of convergence of g, is expected to be O(h*?) only.

4, 'EVALU’AJIONéOF INTEGRALS

~“In ‘many applications, integrais-of the form F(u) = [augdx or G(u) =
faVu- Wdx must be evaluated whege u -is jhe weak solution-of -eq. (4)
and ¢ and ¥ are sufflcxcmly smooth functions. To estimate the error.
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|F(u)- = F(uy)] it is.convenient to have at our disposal negative-norm esti-
mates-for e = u — uy: 4
For an-integer s = 0, we:have by definition-

R ©

Thus, for-¢ € H(Q\0}, we seek to establish:a bound for (e, ¢). Before do-
ing 5o, lét-us recall that.if u-is the weak solution of eq. (4) and'u,-the finite
element:approximation-in eq. (5), then by the-mean value theorem we have
the- following orthogonality-relation:

a(u =-up,vu) — (f)-= ftin),vn) \
: ({(ef e N
= a(U-~ UpsV)-= ((I [tu + (L— t)u;.]dt) (u "*uh),Vh)

o ou

= alews) = (hwev) 3
=0 for all vj-in:S&.
Let ¢ € H*((2),.be the data:in the auxiliary problem
Ly~ gy = ¢ in:Q2, (59
¥ = 00030, (55)

ing the-weak solution of-eq.:(4). Then
(e,0).-=[e;L¢ — glx)y]
= a(e,y) — (eg(x);¥).

Let. ¢, be:an arbitrary element-in S&. Setting v, = ,-in the-orthogonality
relation-(53) and_subtracting from-eq. (56),

(e;¢) = ale,y — ) = ([8(x) = h(x)le; ) + (h(x)e,fn — )
£ Clehly — yih + [([g(x) — h(x)le, )} +{(h(x)e,r — )]

(56)

(57)

Now

AT :
lg() ~ hix)| = Uﬂ j[g"ﬁ-m)— aiﬁ-[m (- z)u,,l] dr!

<[ gk

(58)

1 - t)dlﬁ:l“ Jte = .

So under:the additional assumption that af/du is-uniformly Lipschitz con-

tinuous, we have |g(x) — I(x)] € Clu-— us| and, thus, by the imbedding
theorem for dimension i < 3,

T I(Cgle) ~ Aol Wl = Cle® 9| = Clefdvlo < Clelfllo: (59
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Also, as Jha(x)| < Cfor-all x-due to.the-uniform-Lipschitz bound:on df/éu,
[(h(x)e, -~ Yn)| < Clelily = ulr. (60)
Next, let-y;, be the finite element solution of:the variational problem
-a(Wn,vs) — [g(X)nsvi) = (V1) for all-vyin S§

associated-with the-linear auxiliary problem (54), (55). Assuming that u is
sufficiently smooth-that ¢ € -H***(}):N H{((2), we have the error bound

o = gl = CH* sz = CHB) (61)
From eqs. (57)-(61),
(&:¢) < Ch*lelillg] + Clelligl-
If $"-consists of elements of degree k,-then s + 1 < k and’
(e, 9):= CH****uljenlldll + CH*ulfiarllbll-
Thus for 0-< s < k — 1, we:have
lells < CH**** e + CHulfor 62

In-particular; the L*-norm estimate is O(K**"), in accordance with'the corre-
sponding estimate:for:linear.problems. We summarize the result as follows:

Theorem 5. Let u be-the solution of eq. (4) with.u € H**'(Q2)..Let $" be
the:space of finite elements-of degree:k. If, in addition-to the properties

(i)=(iv) listed-for the boundary value problem (1), (2),.the nonlinear-forcing

term f-is such that-af/du-is-uniformly-Lipschitz continuous in &, then for
0<s=<k-1wehave

lel-s =-O(h****"). 1

Returning:to the problem-of-estimating the error-in-approximating the
integral F(u) by F(u), we have:

Corollary 1. Let y-€ H*(Q2).and let S* be a-finite element space of de-
gree k. Let-F(u) = fougdx. For 0°< s < k =1, we have

|Fw) = Flun)l = CH**plllliless -

Proof. |[F(u) — Fus)| = |(u = un, )| = Clle = wil]-Jgfi.  Applying
Theorem 5, we have the desired result. 1

Remark. The approximation F(us) is superconvergent whenever s 1.
Note that if- is very smooth, then s = & — 1.and we have the maximum
rate-|F(u)- — F(uy) < O(h™).

-
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Corollary 2. Let ¥ € [H**'(Q)]" and:let §” be a-finite element space of
degree k. Let G) = [oVu-Vdx.For0<s < k - 1,

IG@) — Glus)| = Ch**Nefaalftdsns 63) .
Proof. Applying integration by paris,

G) —Gu,) = ];»V(u - up)-¥dx

= J (u ~ up)¥ -nds — j (1t — up)V - Wdx,
af 4]

where n-is the outward unit-normal-on-a(2. Thus,
lG(“) - G("l;‘)] = Hu - llhﬂ--s-lrz.mﬂ‘l'“ ﬁ[Lnrz.an

+ [t =-unfl-{|V - ¥ (64):

i < Clu = usfl-aff¥ -
Thie last-inequality-is obtained using the imbedding H**'(Q) > H**'?(301).
Now, by applying Theorem:3, we obtain.the estimate (62). R

5. CONCLUSIONS

Under-appropriate-assumptions on the solution &-and nonlinear function
f(u) we determine error estimates involving the finite element approxima-
tion to-a class of-second-order elliptic:semilinear problems. In:particular,
the respective first derivatives are shown to remain. Superconvergent alorg

-Gauss lines in a discretization of rectangular clements. The analysis is ex-

‘tended to inciude postprocessing formulas for the boundary flux-and'evalu-
ation of integrals. Thus, one can extend-the ‘superconvergence - ‘theory-to
this class of seniilinear problems under- the stated assumptions.

" This research-has been ‘supported in.part by the Texas Advanced Tech-
‘nology Program, the National Science Foundation, and the Office of
Naval Research.
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Elliptic Systems for a Medium
with Micro-Structure

R.E. SHOWALTER* and-  N.J. WALKINGTON -
Department’ of Mathématics ‘Department ‘of Mathématics

University of Texas Carnegie-Mellon University

Austin, TX 78712 Pittsburgh, PA 15213

1. Introduction:

‘We ¢onsider'boundary-value problems for degenerate ¢lliptic systems-of-the

© form.

(1.18) a(u) =¥ “-;1"‘(35,‘\'f"y;):ik~ f,ﬁ(év,;ss__%@l): vds>f, =z€Q,
‘(1 1b) b(U) v B(z,y,V,U) 9 F, : yEQ,,
(1.1c). B(z,y,VyU) 7+ p(U(zs0)=u(2)> 2 y-€T: .

Here Qis a domam m ]R" and for each va.lue of the ma.cro-va.rxable z € Qi is

speclﬁed a domain £, mth boundary T, for the mxcro-varxable Yy EN,. Each of

a,b,u is a mammal monotone graph “These graphs are not necessarily strictly

1ncroa§1ng, they may be plecemse,gog§tant or gpultl-valued. The elliptic operators:

in (1.1.a) and (11b) are hp;ﬂii;é&i —iii;-tlié.jgradient of dogree p— 1 > 0 and

g—1 > 0, respectively, with % + % > %, so some specific degeneracy is also

permitted here. Certain first order spatial derivatives can be added to (1:1. a)

and- (1 1.b) with-no dlfﬁcult), and: correspondmg problems with constraints, i.e.,

Thls work was supported by grants-from the-National Science Foundahon and the Office

of N av al Research.




variational-inequalities, can be treated'similarly. A particularexample important

for-applications is the linear constraint
(L1d) Ulsyy) =u(z); g€l ,z€Q

which then replaces:(1.1.c). The system (1.1) with u(s) = 2|s|9~%s is called a reg-
ularized micro-structuré model, and (71_.'1?.'a),/_(17.-41’5b‘)‘,;(xl‘.fle.c") is-the corresponding
matched n’u:cr'o structure.model in-which .(formally) € <-0.
‘The tlme-dependent forin of such a system anses as a model for the flow
of a fluid (llquld or: gas) throufrh a fractured. medxum This is assumed to-be a
struéture of porous-and permeable blocks or cells-which are separated from each
other b} a‘higﬂhly developed system of fissures. The majority. of-fluid-transport
‘will occur along flow, paths through the fissure system,and:thé relative volume of
the cell'structure is muchlarger than that of the fissure System. There is assumed’
to be no-diréct flow between adjacent cells, since they are-individually isolated
by the fissures, but the dyiiarrii‘cs:of ‘the 'hu;&-;—éxéﬁﬁrig’éd“betweén each cell and
its surrounding fissures is-a.major aspect of the model ‘The-distributed-micro-
structure- ‘models that we deévelop here contam exphc:tly the local -geometry of
the cell matrix at each point-of:the fissure syster; and they thereby-reﬁect,more
accurately the flux exchange on the mxcro—scale of:the individual cells across- their
intricate interface. In such-a context . L a) prescnbes the flow on the global
‘ scale of the ﬁssure system and (1.1.b) gwes the flow on the microscale of the
mdxvxdual cell at a speclﬁc pomt z m the- ﬁssure system The tra.nsfer of ﬂuld
between the cells and- surroundmg medlum is prescnbed by (1.1:¢) or (1. e ). A
‘major obJectxve is to. accura.tely model this. ﬂuxd exchange between the cells a.nd'
ﬁssures ’
The plan of this paper is as)fol_l_“o'w«s. In Section 2 u'e shsll-—g'ive the precise
7 description and resolution of the statioxiary*pijoblem ina variational formulation

‘by monotone opefato“r‘s‘from Banach spaces to their duals. jn order to achieve

2




this we describe first-the ~r-el'e\f"ant' Sobolev spaces, the continuous:direct sums of
these spaces,.and the distributed trace and constant functionals which occur in
the system. The-op@ratdrs*ﬁfe* monotone functions-or multi-valued-subgradients-

and serve asgnodelgffoxt"nonlineargllipt‘ic»equationTs'inadiverg‘énce‘for'm. In Sec-
tié’n 3 we develop an abstract Gregn’sthebrem to. 8escrjbe the resolution of the
var‘iational form as the sum of a partiél'ﬁdiﬁ’efentiél equation ?and a-complemen-
tary boundary operator. Then sufﬁment conditions of coercmty type are given -

to assert the: exxstence of generahzed solutxons of the varxatlonal equatmns

4444444

((19501), D:gslgr and \K’zlhelm (1953)—mphyswgl\chgm‘xstry as gppdgls for- dxf{u_51on
) thr;mgh a medium with a prescribed 1 microstrﬁctur'e Sixﬁilar systems arose in soil

scxence from Barker (1985), van Genuchten and Dalton-(1986) and in reservoir
\ models for fractured media in Douglas, et al. (1987), Hormmg (1988). By ho-
mogemzatxon -methods. such systems; are. obtained as limits of exact mi¢ro-scale
models, .and- then the effective coefﬁcxents are computed exphc1tly from local
material properties in Vogt (1982_), Hornung and»Jage,r (to-appear), ‘Arbo(gast,,
Douglas and Hornung (1990). An §>§§§enceé§niduene§;s theory for these linear
problems which eiploits the:s\tro'nwgi ﬁa:@bolig:struqturg'»gf the system was given
in:Showalter. and".War,lkiﬁgton»(IIQQ’l’-) One can-alternatively eliminate U and ob-
‘tain a single functional differential: equatlon for u in the simpler space L (£2),-but
the structure-of the equation-then: obstructs the optunal parabolic type results;
see- Hornung-and Showalter (1990): Also see Friedman and Tzavaras (1987) for

a nonlinear system with reaction-diffusion local effects.

2, The Variational Eqrmtjlatiéﬁ

We shall resolve our systems- as monotone operator equations. Let §2 be a
bounded domain.in R" with smooth boundary, I' = 9Q. Let 1 < p < oo and
denote by LP() the space of p'* power-integrablefunctions on ©; by L®(2) the

3




essentially bounded:measurable functions;.and’ the dualitypairing by
(b= [ w@f(@dz,  we @), V@),

for any paif 6f‘»conjugate i)owers, %, + -‘-f,- =1, Let C§(Q) denote-the space-of

infinitely differentiable functions with compact support in Q. WmP(Q) is the

Béﬁé‘chspa'ce;bf-functions in. L?(Q):for which each partial derivative-up to order

" m belongs to LP(§), and WP({1) is the closure of C(Q) inWmP(Q). See

Adams (1975) for information on these Sobolev spaces. In addition, we shall be

giiréﬁ for éacljﬁ.‘i: € ’Q‘:ﬁ:l_i'"éunded?dgihainﬂ, which lies Al“pcally*on‘:dne side of-its

‘stnooth ’boxfﬁrajaf‘y‘ I';. Let 1< ¢ < oo and-denote by 7, :‘WI'V(Q;) — LY(T;)
“thé trace xﬁap,whichfassiignsfbounaafy values. Let T; be the range of 7,; thisis a

‘Banach space with the norm induced by 4, from W‘”(Q,) Since.I'; is smooth,.

thefe is & unit bﬁtwafdiﬁériﬁalzuzj(;é):at each-s:€ T';. Finally, we define W1 9(Q;)

- e, ehchf"yz(i'p‘) is constant a.e. on T';. We shall dénoté-By 6, the gradient-on

We(Q,) and’by ’6”tbg‘z”gr'adient* on. WI;'P(Q);< '

- In order to presciibé a measurabie family-of cells, {2,z € {}; set § = R",
let @-C @ xR ber'a}_g’iyeﬁ measurable set, and set Q; = {ve R":(z,y) € Q).
Each £, is-measurablein R” anii’By‘zero-ext_éﬁsiaﬁ,We iijépftifyﬂi(_‘Q)' — LI(Qx
R") and each L%(Q, )< LI(R®). Thus we obtain

19(Q) = {U e L@ LI(R™) : U ()€ L(22), ae. z&0}.
We-shall denote the duality on this Banach space by
U,2) (9= ]ﬂ{/; :U(x,y)di(j;,, y) dy} dz, UELYQ),del(Q).

The state space for our problems.will-be the product LYQ) x L} (Q).
Note that W19(Q,) is continuously imbedded.in L9(f;), uniformly for z-€

4,




.. 1t follows:that the direct-sum

W, = LHQW(Q,)) = {U € L(Q):U(s) € WH(R,) , ae.  €Q,
 and /Q IV e < oo}

is a Banach soao‘e. We siiall‘g‘se a variety-of such spaces which can be constructed
‘in this:manner. Moreover we shall assumme:that each. Q;riis a bounded domain in-
R" which lies locally on one side-of its boundary, F;, and T, is a-C2-manifcld
of dimension n =1, We assumie the:trace Tnaps v; : Wh4({;) — L'(:’I‘,,)zaxe—:un:
formly bounded. Thus foreach U € W, it follows that the distributed trace 4(U)
defined by 'y(U)(a: s) = (7,(U(:t))(s), s€T:, z €, belongs to. LY(R, LI(T, c))-
The- distributed-trace y- maps Wy onto-7; = L(R, T ). < L9(%, LY(T.;)).

Next consider the collection {W}4($2;) : = € 2} -of Sobolev spaces given
-above-and denote by W = L9(%, Wl'q(Q )):the: correspondmg direct sum. Thus
for each-U € Wi it follows that the-distributed trace- ¥(UY belongs to LI(Q2).. We
define Wﬂ P to be the subspace-of those U € W; for which 'x(U—) € WJ:”Z(Q).

‘Since v ’JWj‘ ;:«I,'(Qj,'is goﬁtinuoﬁs_;‘ Wg?” is complete wiih%the;norm
Nl W0, + N7 Ulgar -

This Bariach space W, () x' W, will be the energy space for the regularized
problem f(’lf.ZI:)"éﬁdi ‘EW(}’P “will be the energy -space-for-the constrained problem
in which-(1.1.c) is replaced by the Dirichlet: condition (1.1.c'). Note that WyP
is identified’ with the closed subspace {[yU,U] : U € fWS"”‘;‘}‘of WP () x W,.
Finally, weshall let Wy. denote-the kernel of v, Wo = {U € W, : 4U = 0 in T, }-

We have -defined W}9(Q,)-to be the set. of w € Wh9(Q,) for which y,w
is a constant multiple of 1., the constant function equal to one on I';. Thus
W29(§) is the presimageby 7 of the subspace R+1. of T.. We specified-the
subspace W; similarly as-the subspace of W, obtained as the pre-image by 7 of
‘the subspace bq () of 7,. To be precise, we denote-by A the map of L9(Q) into
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T, given by Av(z) = v(z)- 1., ae. 7 € Q, v € LI(); A is an isomorphism-of
L3(f2) onto a closed subspace-of T;. The dual map A" taking 7/ into LY (Q) is
given by

¥

Ng)=900) = [ 0:1)-o(e)dz, g€ T}, ve L¥@),
1Y -
~so-we have M'g(z) = gz(1z), a.e..z-€ §: Moreover, when.g; € L”;(E;Jzit follows
that
' :g?(lz)*»“—'?/i; 9z(y)dy ,.
the integral of the indicated Bsuﬁdary funétionél. }Tilug,;for g-€ Lq{:(ﬁ, Ls (Tz))
C T}, N'g € LY(R) is given by

(21). Xe@)= [ ey, weseq.

The imbedding A of L9(%) into 7, and its dual-map A will:play. an essential role
in our system:below.

‘We construct ther elhptlc differential operators im d:vergence form as realiza-
tions of monotone operatora from Banach spaces to- thexr duals. Assume we.are
given 4: O xR" — R" such that for some 1 <.p < 60,91 -€. L¥' (), go-€ L}(R),
cand ¢ >0

(228)  Als, E)—is;continuogs in £ € R™ and measurablesin.z;.and.
A=) s kP +a1(2)
@2b)  (Az,€)- Alz,7), E-7) 20,
@20 Az6)-£2 colfl - go(z)
fofr ae z€$ andallffeR"
Thehthe;gl'obalxdiﬁ’uéion:operator A': Wy P(Q) =» W =Lir(Q)-is given by

Au(v) = /{; (z, Vu(:z:)) Vu(z)dz , u,v € WoP(52) .
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Thus, each Au is-equivalent to its restrictior. to C§2(£), the distribution
Au s Aulog gy = =9 A(,Fu)
which specifies-the value of this nonlinear élliptic divergence operator.
Assume we-are given B: Q@ % R" = R" such: that for some 1 < g < 00,

1€ Lq'(Q)J ho-€ L (@),.c and co >0
(2:3:2) B(z,v, f) is continuous in £ € R"™ and measurable-in (z,y) € Q, and

1Bz, < 197 4 (2,9)
(23b)_(B(z.y,§) = B(=z,y,7), £ =) 205,
(23.c) B(e,9,£): 2 eol€l? = ho(2;y)

for a.e. (z,y)-€ Q and all ;77 € R™.
‘Then- define for-éach z-€ Q, B; : W'4(Q,) & Whe(Q;) by

Bt:’,i’(’”)“i"» / E'(fz, y,ﬁyw(y))ﬁ,v(y)dy ) 7—!1’,1?—@ Wl;‘q:(Q'x).:-

0. A T

The elliptic differential operator on 2. is:given by the formal part of-B., the
distribution

in—-’eWg 0. Also, we-shall-denote-by B : W, — W, the distributed Qperafér
constructed from:the collection {B; :z.€ Q) by

BU(z) = B (U(z)) , ae"zeR,UeW,,
and we note that this-is equivalent to
BU(V).= /‘B; (U(2))V(z)dz , UVeWw,:
0

The exchange term in our system will be given as a monotone graph which

- is‘a-subgradient operator. Thus, assume m IR —-R*"is-convex and bounded by
(2.4) C m() SO +1), sER,
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hence, continuous. Then by

o) = /n / mlgma)deds, g€ L1(9L0(T)

we-obtain. the convex,.continuous«h : L8, L9(T;)) - R¥. Assume !

so that Wy P(Q) < L9(), and consider the:linear continuous maps

1

+4>

b1

NsWPP@) = QL) o i Wy L@ IATL)) .-

Then the-compositefunction
Mu,U) = (U -2), wEWPHQ), UeWw,,

is- convex .and continuous on 'WJA‘?(Q)VX ‘W,. The subgradients are ditectly com-
puted: by standard: results Ekland and Temam (1976). Specifically, we have
§ € 0m(g) if and only if -

ﬁ(z7s)’€;am(g(i;§))zi &e. :§>€ r:; y &€ T EQ, |

and we have [f, F| € OM[u, U] if and only if f = =N{y) in W=1#(Q) and
F =ql(p)in W, fgrsor‘ne—p:esafﬁ('ytf - /\u)

 The following Tesult givesz$i,i‘ﬁiéi’ent conditions for the-regularized problem to
be*wﬁil-bosed’.

Theorem 1. Assume 1 <_p, g, % + %; 2> ‘%,.apd define the spaces and-operators
), 7 as-above. Specifically, the:sets {S); : z € 1} are —u;i_i!qrmly(bouﬂded ‘with
smooth boundaries, and the trace-maps {7} are uniformly bounded: Let the
functions A, B, and-m satisfy (2:2), (2.3) (2.4); and assunie-in addition that
(2.5) m(s)>colsl?, seER.

Then:for each pair f € W19 (Q), F e W.;, there exists a-solution of

(2:6.2). u € WyP(Q): A(w) — X(u).= f in WI(Q)
(2:6.b) UeW; :BUY+4'()=F inW,
(2:6:) e LY (L8 () : p € BR(U - du) .
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For-any such solution we -have

(2'7=) / u(z,s)ds = (F(x)’12> ) de 7€Q,
Jr.
where 1, denotes the constant unit fanction.in W19(S,).

Proof. The system (2.6)is a "fpseﬁdii-monot,dne plus subgradient” operator

equation-of the:form
Tu, UJ-€ WEP(Q) x W, i forall [v,V] e'W“-P(Q)=x W,
“Au(v) + BU(V) + 0M|u, U]([v V]) 3-f(v)+ F(V)

It remains:only to.verify a coercivity condxtlon, namely,

(2.6")

@ 8)» N Au(u)+BU(U) + i(yY ~du)
o Nullwrr @y + NTUNw,

-—=— 4-00

as Jfullwpray + [Ullw, —+oo-

v‘Ch‘obséfk. =max{|y,,| Y€ z€ Q) and let vz =(42,... ,vz) be the unit
normal on T';. For v € W19(Q,).we have by Gauss’ Theorem-

;/I‘l:(lvi' +‘ynQI?|§;’;Z;anv)f$ j/ﬂ a"(y"lv(y)lq) dyj

= [ vx@salrevtslieds.

Holder’s inequality-then:shows

"”"L'(Q,) > k"'Tzv" '(I:,);E'F lelﬂlz_q‘(ln,)"an”"l,i(fzg) y -

and from this follows

~

'"P"Lq(n,) S Zkll*rzvll Lt (2k).’(9f 17~ 182017+ (a.)

by Young?s inequality. From here-we obtain-

(2:9) CO||V"L¢(Q) < "'YVII Lye,Le(ray).t "vyV"L(Q) . VEW,.
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Thus from. the a:priori estimate
Au(uy+BUU) + MU - M) >

(210) ol Vil gy — Ngoller e, + coll Vs Ul gy = lhollzr o)

+collyU -—'\'!“zc(n,zj’q(rf)') U EW(}’P(Q) » U € Wq )

the Poincaré-type inequality (2:9) and the equivalence of IVulls () ‘with the
norin on W} ”(Q—),,\ye can obtain. the coercivity condition (2.8). Specifically, if

(2.8)-is:bounded by K, then(2:10) is-bounded above by
K(lullwir ) ViUl +UlsgLera) -
< Kr(““llu{ge}g(g)_ +1IVyUllLei@y + 19U = AeliLee; Lo,y + I1ullLee)) »

and the:last term is dominated by the first. This gives an explicit bound on éach

of these terms and; - hence; on lullwzr (n),+f|lg[iW.- ,

for'somé v € L9(2), and this shows -

~ #(W)’:(F,i:)

since-BU(V) = 0, and-thus

/ Np(@)(z)dz = (W) = p(yo)= / {F();1)0(z) dz".
] Ja©

The identity (2.7)-now follows from (2.1).

The more general case (1.1) of a monotone pointwise perturbation is easily

handled likewise.

Corollary 1. Letp : R — Rt and ® : R = R* be convex and continuous,
with ¢(0) = $(0) =0, and assume

(211) @) SC(slt41) , B(s)SC(sl*+1), sER.
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For-each pair f € W ‘1']""'((2),::}’ € W;, ‘there exists- a-solution -of

(2128 w€ Wé""’(ﬂ),::& + A(w)— N()=f in W)

(2125) U €W, :b+BU) +7' (W) =F in W,
. (212¢)  pe€dm(yU - ) in L¥(Q,L9(T,)), and
2124) @ €dp(u) in L9(R);be dB(U) in L7(Q).

_For any such solution-we have

/ (2:13) ./n bz,y)dy+ A pu(z,s)ds-={F(z),1z) ae. c€f.

Proof. This follows as.above-but with the continuous conveprci; funétig’n
Ylu, U= / cp(u(:c)) dz-+ / / &(U(zyy))- dy dz

+ m('yU ,\u) 5w, Ul€ WRP(Q) x W, .

The $ubgradient can-be-computed termwise-because the three terms-are contin-
uous on L#(S2), L9(Q), and =Iﬁ(Q L3(T;)), respectively.

Remark The lower bound (2 5) on-m(-) may be deleted in Corollary 1 if such—

‘a lower estimate is- known to hold for &. It is also unnecssary in the -matched

m;crostructuxe:model, ‘see below.

3. The-Green’s Formula

In order to prescribe the boundary condition (L.1.c) explicitly, we dexvelop
an-appropriate Green’s-formula for the opeiafors B.. Note that we can identify

E'ﬁf(fi,’) cwW ;1’9'(Q§=);sﬁnce I‘VJ "9(Q)is dense in.LI(S2, ), so it is meaningful to
define

D, = {w e W"(Q,) : Bzw € LY (2.)} .
This is the domain for the abstract Green’s Theorem.
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Lemma 1. There is a unique operator-0; : D, — T, for which B;w = B ui +
‘4.8,w for-allw € D,. That is, we have

(3.1). Byw(v) = (Bzw;v) )+ (Ocw,v2v),  v-€ WHI(Q,),
for every w€ D,.

Proof. The strict. morphlsm vz of W’*'(Q,) onto T; has a dual 7z which is an
isomorphism.of T; onto. Wy'9(2:)*, the-annihilator in‘W9(,)’ of the kernel of
v:. Foreach w € D;, the difference B,w — B;w is- m}!{’o Q)+ , so'it is equal

to 'y,',(a,w)éfor a unique element azw;E,T' .

Remark. The identity (3.1) is a generahzed decomposmon of B, into-a partlal
dlﬂ'erentlal .operator-on Q, and a boundary cond:tlon on T'z. I I'; is smooth,
v; denotes the unit outward:normal on.T';, and-if B(z,-; Vyw) € [Whe'(Q,))",

then w-€ D; and from the classical:Green’s Theorem-we obtain

Bzw(v).=(B:w,v)L(,)= / B(z,s,Vyw)i(s)yv(s)ds.,  veEWH(Q,).

Thus,. 3 w= B(z,-, ,w) Vg is the mdlcated rormal derivative in. L9’ (l‘,) v hen
B(z, R ,w) is as smooth as above, and so-we can regard 8w in. general as an

extension of- th:s nonlinear differential operator- on,thefboundary.

The formal part of B+ W; — W, is the operator B: Wy = W;, given by
the restriction B(U) = BU|w,. Since Wj is dense in-L9(Q) we can:specify the

domain :
D-= {U € W, : BU) € L*(Q)}
on which:we obtain as-before a distributed form of Green’s theorem.

Lemma 2. There is a unique operator:d.: D — T such that

B(U)V)= (B(U),V)yq +(0U,aV), UeD,VeW,.
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Theorem 2. Let the Sobolev spaces-and.trace operators be given as-above. We

s‘umgmarize ihem —in%athe-foIfowing-—_diagrams

Q) LI(T) L(Q) LI(Q, L9(T,))
whiy(Q,) = T w, — T,

U 1 V) 3!
T WM(Q) — R, W == L)
U U o
Woi(2:) — {0} Wo —— . {0}

- in which 7 is the restriction of v to Wj. Wg"—(Q,)',/Wo are dense in LI(Q;),
L3(Q); respectively. Let operator By, z-€ Q, and'B be given and define theu'
formal paits-B,, B: as above. ’Tbeﬁ—c‘bns‘tjmét:thé, domains D;,.D and-boundary
operators 0y, 0 as,_'in:Lemmar,l and Lemima 2, respectively. It follows that for
anyU-€W,,

(a) BU(z) = Bo(U(z)) in W3S(Q,)' for a.e. z € @, and U € D if and only if

U(z) € D, for a.e. € Q and z — B,U(z):belongs-to LY (Q);

(b) for each U €D,
0U(z) = 8, (U(z)): in T, forae. €
.and
‘BU = BU ++,(N'aU) in W},

and for each V € W, ‘we have

/ B:U(z)(V(2)) dz= / B,U(z)V(z)dy dz+ ] (9:U(2),1:)(1iV (=) d= .

Ja Q 0
Proof. (a) For V € W, we obtain from the definitions of B, B and B, respec-
tively,

/ﬂ BU(2)V(z)dz = ]n BU(V)dz = fn B.U(x)(V(z))-d= = L BU(2)V(z)dz ,
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fén‘d:sqathe'ﬁgst equality holds since W) = L9, Wa9(Q,)). The characteriza-
tion of D is:immediate now.
(b) For V € W, we obtain from the definitions of ¥, 8, 0;, resgectively, and
(a)
[ovtva)de= [avavyde = [ (B0~ BU)V ()

= /Q 8:(U(=)) 1V (2)da

Since the range of 7 is 7"' =L (92, T!), the first equality follows. The second is
immediate fiom Lemma 2 since on Wy, y-= Ao and 4" = ~1)', and the third

follows from-the preceﬂing remarks.

‘Corollary 2.. In the situation of Corollary I, f € L9 () and F-€ L% (Q).if and
only if Au € L¥(Q). and B(U). € L%'(Q), and-in that:case the solution satisfies

almost everywhere

a(z) € Bp(u(z)) , alz) + Au(e) + /ﬂ b(z,y) dy-= f(z)+ /,, F(z,y)dy , z €9,

!(’3) =0, . . seT,
b(z,y) € 8% (U(z,y)) , b(z,y) + BU(x,y) = F(z,y) ,  yef., 7
(z;5) € dm(yU(z,8)~u(z)) , 8:(U(z))(s) + p(z,s)=0, seT, .

Finally, we note that corresponding results for the maiched microstructure
model are obtained directly by specializing the system:(2.6') to the space Wg P,
This is identified with-{[yU,U} : U € W2”} as a subspace of Woi”’,(Q) x Wy,
and w;—need only to restrict the -solution [u,U] and the test functions [v, V],
v:= 4V, to this subspace to-resolve the matched model: Then the-exchange term
M -does not occur in the system;:see the proof of Proposition 1, especially for
the coercivity. These observations yield the following analogous results for the

matched microstructure model.
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Theorem 1'. Assumel < p,q,% + -3;2 —:;, and define the-spaces-and operators

),y as before. Let the-functions A, B, and m satisfy:(2.2),-(2.3)-and (2.4). Then
for each:pair f € QW“]"i"’f(Q), F:€ W)} thereexists-a-unique-solution-of

(3:2:a) u € WaP(Q) + A(u) = £ + (F;1) in W17 (Q)
(3:2.b) " UeW:BU)=F in W,
(3:2:¢) AU =X in L(Q) C'7, .

Corollary 1'. Suppose:p, ®-are given as before-and.assume (2.11). For f,F as.

above there exists a unique solution of

(338) weWPPQ)ra+(b1)+AW) = f+(F1) in WP (Q)
B83b) UeWirb+BU)y=F in W,

(3.3.c) AU =‘Ag\'u in LYQ)C T,

(3.3.d) a€dp(u) in LT (Q), be () iz; 9 (Q) .

In addition, f € L9'(Q),and F'¢ L9X(Q) if and only if Au-€ L7 (R) and B(U) €

Lq'(Q),and in that case the solution-satisfies almost:everywhere

a(z)-€ 0p(u(z)), a(z)+Au(z)+ fg’(z,y)‘dy: f(=)+ /QF(w y)dy,z€q,

u(s) =-0-

sel,
b(z,y) € “0<I>(U(§c’,y))> , Yz, y)+ BU(z,y) = F(z,y) , yE, ,
U(ID,S) /="’§L($)‘,£ sel;.

Remiarks. _ For the very special case of p = ¢ > 2.and a(u) = u, U) = U in
the situation of Theorem 1 it follows from Brezis (1972) or Lions (1969) that the
Caﬁchy-Dirichlet problem for (1.1) is well-posed in the space LP(0,T; W, ?(£) x
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W, ) with-appropriate initial datafu(:r,Q); U(z,y,0) and source functions f(z,t),
F(z,y,t). A similar remark holds if ‘the case of Theorem 1’ for the matched

model witis (1 1.¢'). These restrictive-assumptions:will'be substantially relaxed

in Showalter-and Walkington (to appear).

Furthermore, variational inequalities may be resolved for problems corre=
sponding to either the regularized or the matched miicrostructure model by
adding the indicator function of a-convex constraint set. to the convex function
V. Thus-one can handle such problems with constraints on the -global variable

u,.the-local variables:Us-or their-difference Au U on the-interface.
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Abstract. A model of nonlinear diffusion through a porous: medium- is
’con51dered ‘where the solute is -adsorbed through the boundanes of the
‘md1v1dual cells in the ‘prescribed mictostructure, and the flow-within each
.cell-is governed'by:a “corresponding porous medium equation. The resulting
system is shown to.be ‘well-posed-in.an appropriate LY space;-and certain.
—propertles of the solution are obtamed for specxa.l cases.

1. Introduction.

We begin with a des_qripjtion»pfthe porous media system:to be studied: Let  be-

a bounided domain in RN “which lies locally on one side of its C? boundary I'. Denote-

that Q'is a given measurable subset of @ xRN andset . = {ye RN : [z, y)-€ Q3.

" Foréach point € Q wédssume Q; i§ a domain in RN with boundary Iz, and these
’

operator-in the'xﬁicro-vggiable y € Q. and by ﬁ; ‘the unit outward normal on I',,.

satisfy-(iiniformly-in ) the samé-liypotheses as 2-and T; denote by A, the Laplace

‘Suppose we_are-given five maximal monotone graphs in R denoted by a,b,a, §,7.

 We-shall-consider the singular-degenerate parabolic system

(1.1.a) gt—a(w) = A(w) +/I: VW Adsd>f, z€Q,
(1.1.b) Vw - n +:b(i‘)—_a’0--a, z€T, W

(1.1.a) g—t-a(W) ~-AWDSF, YEQ:,




I ¢ , -
(LLB) VW -nz + BW):— 7(“(“’)) 24 5 sely

fort > 0 with initial conditicas:a(w(=,0)), (W (z,y,0)) prescribed in addition to
the sources f € T1(§2:x(0,00))-azid F € L1(Qx(0;69)), where Q = T1.eq Q. Thus
:(1.1.a) governs the flow on the macro-scale of the porous-medium , i.e., through
‘the fissures in-this global'domain, and (1.1.a) preséribes the flow on:the micro-scale
of the individual:cell ; located-at the point z-€:Q. The integral:term in (1.1.a) is
the total flux flowing across T’z into the cell, and this flux is determined by (1.1.8).

The monotoné graphs-are possibly multi-valued functions, so we obtain inclu-
sions instead of equations: the corresponding equation holds for some:selection-out -
of the graph: In-general, w(z) is:the density of mobil solute-at z-€ Q, W(z,y) is:
the density of solute at y €'Q;-adsorbed.in this cell, a(w‘)rand‘Aa(.;W'f—) réepresent, cor-
»reséond_ing concentrations of the:solute present;:b(w)-is-the-flux across I' at a given
density w, and' B(W).— 'y(b determines the transport of flux across-I'; for given. Y(O_«(W‘))
-density W on the-inside ot;j&), and concentration-a(w) on the outside of this cell at
z. These last two graphs correspond to the adsorption isotherms of the media.

The problem (1.1) will be regarded as an abstract Cauchy problem for the

evolution equation
(1.2) W)+ AQu@®)-3 f®, +>0,

in the Banach space X = L*(Q)xL!(Q). Recall from [3], (2] that an integral solution
-of (1.2) in a Banach space X is:a u € C([0, 00), X) such that u(t) € dom(A4) and.

Hlu(t) - ll < Lllu(s)— o + / () = yyu(r) — 2} dr

for each y € A(z) and 0 < sS t. The pairing in the integral is the semi-scalar-
product

(y,2) = sup{(y,2") : " € X* , l=*|| = |lal| = 2"(2)} .

A (possibly multi-valued) operator A on X is called accrztive if

lur — vz £ fJus — uz + €(f1 ~ f2)l

o




identify

: ‘ v
for all € > 0; [b1, f1] € 4, [B2, f2) € A. Ifalso I + A is-onto X then 4 is called

m:accretive. ‘The fundamental result of [3] is-that for f € L!([0,00),X) and ug €
’d’oﬁ(A)’ there-is a unique integfalisolution u of (1.2)-with u(0) =-uo. This integral

solution for the appropriate m-aécretive opérator in L*(Q) x LYQ) will be the

. “generalized.-solution” of (1.1.).

Y
2. The Stationary Problem.
~ We begin with some notation. For I <p < oo-we-denote by LP() the usual
Lebesgue space, and -the conjugate exponent by p', so % + 517 = 1. W™P(Q)-is the
Banach space-of those functions whose derivatives up-to order m belong to LP(f2),
C(‘;’%(Q) is the space.of infinitely differentiable functions.with:compact suppért'in 2,

and Wy2(Q)-is the closure of C§2(Q) in W™2(Q). See’[1]-for information.on-these

Sobolev spaces. Specifically, letry.: W 2(Q)-— LP(T)-and 1 : WAP(,) — LP(Ty)

denote the trace maps onto boundary values:

An essential consti‘;gction,ih shé-continuous-direct sum or random Banach space
denote by LP(2, L?(§2z)): We-identify LP(§2;,:L?(£2z)) = L?(Q) by-the Fubini-Tonelli
theorems with-the duality

| /ﬂ { /9 , W (z,y)®(z,y) dy}:diiz: /Q wWeé, WEeILQ), ¢e Lp'(@.

Since W1?(Q,) is. continuously imbedded in. L?(R. ), uniformly for z € Q, we can
LP (Q,WP(Q,)) = { W e LP(Q) : W(z) € WHP(Q.);

ae z€Q, and J{z W @)Ly, de < 00} .
Similarly we construct LP(Q, LP(T';)). We shall assume the trace maps 7 : WH1(Q;) —
LY(T;)are uniformly bounded and define the distributed trace (W)in L}(Q, L (T';))
for each W € L} (Q, WH1(Q.)) by 7(W)(z, 8)-= (W (2))(s), s € Tz, « € & Thus
7 LY(Q, Wl'? (§2:)) = L} (9, L*(T,)) is continuous. Finally, the (constant) imbed-
ding X : L}(Q) — L}{(Q, L}(T;)) given by (Mu)(z,s) = u(z), s € Tz, z € , and its
formal dual X : L}(Q, LY(T',)) — LX() given by A(U)(z) = Jr, Ulz,s)ds, z € &,

will play an essential role-in the porous media system.
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N
The-linear Neumann problem-
@1 ~bw=fin INQ) , Vw-R=g¢in ) n
is- an ingredient of each -of j:_he;, boundary-value problems below. By a solution we
mean a-
1) wew(@): [Yu-Vo= [ fo+ [om@), pewim).
Q Q r
By*set@irj@g/xp: 1 it follows that-a-necessary-condition-for-the-existence of a solution
is- L
/ F+ / g=0.
/S r
It is“well-known that this condition. is also-sufficient for éxistence of a solution.
Solutions: are-unique*up to-an additive constant, so there-is a unique solution w
with fnw =-0: This.solution:satisfies
PR - - i i, ’ir
IIWII@S const. || fllz1 () +llgllzacry - ) W)
For a-maximal monotone:graph & in IR we say ¢ € o(w) in L?(Q) for a real-
valued: function w on Q if £ € L2(R) and £(z) € o(w(x)): for ae. z € 2. The
,,followiﬁg;gés'ult plays a-pivotal-role-in the following.
~Lemma-1. Letl<p< oo, f€LPN), g€ LP(T') and w be a solution of (2:1).
Let o be‘a maximal monotone graph in R-and 0 € o(0). If ¢ € 6(w) in L?'() and
n-€.0(row) in L? (T, then
+ / >0.
> o /fﬁ g2 - < Space

Y

L

For a prsc}ntz o the result is immediate. For the 1nore general case it follows-by

the methods. of [5]; see [4] for—detay]s.

The stationary problem corfesponding to (1.1) is- the following: for f € L}(£).
and F € LY(Q, L'(Q.)) = L*(Q).-given, find

weWH(Q), ue€a(w)in LMQ), v €b(rnw)in Ll(l") ,
W e LHQ,Wh(Q.:)), UeaW)inINQ), V €pB(rW)inL'(Q,LY(T,))

4




LY

such that

(222)  w-2wiraQ@)=V)=f m IHQ)

(2.2.0) U -—AyW =F _ . in Ll(Q)

228 - VEV,W-i, =1(A@) in L'(Q,LY(T.)) .

Proposition 1. Assume v is-continious-and [y(r)| < K|r|, r € R. Forj = 1,2,
let f; € L}(9) and F; -€ L} Q) ‘be given, and suppose- u_,,v,,w,, U;,V;, W; are
correspondmg solutzons of (2.2). Then

(@38) / |u1—u2l+ / 91— g + /ll‘llv(ul) )l
/|f1 le+// W-vl,
c(2:3:b)“ / / IU’;—Uz”I’f /ﬂrlvl—Vzl o S

< [ [ AR= il [Ratinn) =)
JQ JQ, -

_and, hence;

»'(24) /|u1~u2|+/|v1—v2|+// 0, - U2[</|f2-—f2|+// |Fy =P

‘Corollary-1. The sdlutionssatisfi}ri
(2.5.2) ‘/9 (w1 =uz)* + /I‘ (v1 — v ) + /s; i!rzl(v(ulj’— ry(uz))f*'
L o6 — £ " W Y ' -
S‘/Q(fr f2) +/s;/rz(V2 [_2)i-,
(2.5.b) /Q | @-vyr+ [ [ o -vy
< /Q A:(FI =Byt + [} 2] (v(us) = "/(1t2))'+

X3
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(2:6). /ﬂ (ur=u)* + /F (vli —ug)* + /ﬂ /Q :(Ur =Uz)*

< [e-mra [ [ m-myr

Proof. For the two-solutions subtract the corresponding equations to obtain (2.2)
With u = uy — u2,.v-="v; — vy, etc. Note that w is-a:solution-of a linear Neumann
problem. Let qA_lget{gheag:ra‘ph sgn, i.e., o(r) =1ifr >0,0(r) = ~1lifr < 0, and
5(0) = [~1,1]. Choose &(z) = ao(u(z) + w(&)), n(z) = oo(v(s) + Fow(s)); note
xthé’t € €.0(u),; £ €-o(w), since a-is:monotone, and.n €-d(v);.n. € o(Tow):since b is
mionotone. Thus Lemma 1 applies, and:we obtain «(2:3.a): Similarly, W(z,-) is a
:solution-of a Newmesir: —p:oﬁlem*on'_ﬂt for a.e. z € Q,.s0-the preceding argument
“at ae.x €9, followed ¥y an integration over Q, leads t5:(2:3.b). Also (2.4)follows
by adding (2.3). Finally, the argument above with o .chiosen to-be the graph.sgn*
yields Corollary 1.
“The inequality-(2.4) is tlie,fgnd@éf;tal estimate ii-L! () x L' (Q)-on & solution
.of the system (2.2). It shows that the-dynamics of (1.1).¢orresponds to a semigroup
_of contractions in:this.space. Mgré09§:,5(2%3)‘—dis§iays explicitly the dependence of

the components-of.(2:2)-on-the-exchange or coupling terms‘in L*(, L} (T:)).

édr@llary 2. Suppose f € L) and F € L(Q). For j = 1,2, let V; €
L}(Q, L' (T'2)) be given and suppose u;; v;, w; are corresponding solutions of(2.2.a),
(2.2b). Then '

(2:7.0) /ﬂ s = el + [ [Pl ) =1(u)l< [ /r Vi - Vil

Similarly, let u; be given for j = 1,2 and suppose Uj,V;,W; are corresponding
solutions of (2.2.a),-(2:2.8): Then:

.- :(2-7'?5 L/n, Uy -YU2|+/Q£3 i — V2| < /9 Tzl ly(e1) = v(u2)] -

Theorem 1. Assume the following-of the maximal monotone graphs a, b, «, B,7:
Rg(a+b) =R and bldoma]>0;

Rg(a+B)=R and P[doma)D Rgyoa;




«.is Lipschitz-on Rga: |y(ri)—7(r2)| < Klr1 —r2], 1,72 € Rga. Then for each
f € }Q),F € L}(Q). there is-a solution-of (2.2).

*

w,v,w of (2:2.a) with 'V replaced by V,(2.2.b), u-€.a(w) in ZX(R), and-v € b(row)
in L} (§). Fix z € Q-and consider the boundary-value problem

* Proof. Let V € L}(Q,L*(T:))be given. From [4] it follows there exists a solution

(2:8.3) Wa) € W) , U(s) € a(W(z)) in L(92),
V(z)-€ B(r:W(2)) in L'(Tz)

(2.8.b) U(z)— AyW(z) = F(z) in L'(Q.),

28c) © V(@)+VW(z)- Az =7((u)(=))

_ By use of [r;:.g]v‘e,cx?vﬁthgﬂ(r) 3 7(,\11(:::)) we construct the graphs a(t):=-a(t+€)—s

aﬁdﬁ(t)= Bt +7)= éy()\u(}c:))éfbr whici- “?.8) is-equivalent to
 WewM(Q,) , TeaW) , VefnW)

F—a,W =Fz)=s ia INQs)

VYW A, =0 in LML) -

' for the functions T'=U(z)—s, ¥ = V(z) - 1(u(z)), W = W(z)—r, and 0 € &(0),
0 € B(0). Thus (2.8)has a solution U(z),V (), W(z) by[4] for-a.e. z € R, and from
the estima;té's,above this family of solutions is-a solution U, V, W of (2.2.a), (2.2.8).
Set V = T(V); thisidéfines a self-map T on L} (@, LM (T2)), and from the.estimates
(2.3) it follows that T IS non-expansive. Moreover, if V1, V2-€ L}(Q,L¥(I;)) and
the 'cOrresponding:solutions of (2.2) with-V replaced by _V; in (2.2.2) are denoted
by u;,v5,w;, Uj, Vj, Wj for j = 1,2, then:(2.7.a) with V; = ¥;_and (2.7.b) hold. If
M= sup{ T'z|: z € 2}, then we:have from the Lipschitz condition on ¥

W + 1 / ITz] ly(ua) = ¥(u2)] </ [ —uzl+/ [Tz Iy(wa) = v(u2)i
Thus-with (2.7) we-obtain

/Q/PSIT(VI)—T(‘Vz)IS(HW // | V) — Vo

=1




s0:T is a strict contraction. The fixed-point V = T(V) in LY(9,L(Q3)) yields the
solution of (2:2).

Define a (possibly-multivalued) operator A-in L*(Q)xL!(Q):as follows: [f, Fle
Alu, U] if-there exist w € WH1(Q), W € L}(Q, W (,)).and-u, v for which

~Aw+X{yQu)-V) =f, we€aw) in L(Q),
v+ V- =0, vepf(rw) 7 in ZY(I)-,
—AW=F, Ué&a(¥) in I'(Q),

V4V, Weip=90), VEREW)  in LN(QINIL)).

Thus (2.2) is equivalent to (I + A)[u, U] 5 [f, F]. From.(2.4)-and Theorem 1 it
follows: that (I +.4)~* is-a contraction-on L*(Q) x Ll'(Q) By rescaling the five
graphs it follows easily-that :the-same holds Afor (I +€A)"? for every € > 0, so A'is
m-accretive on L' (Q2):x-L1(Q):
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A PROCEDURE FOR CALCULATING VORTICITY
" BOUNDARY CONDITIONS IN THE STREAM-
FUNCTION=VORTICITY METHOD:

"
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- . ' The Unnemry “of-Texas at Austin, Austin, Tx 78712, U:S:A.
. EG&G Idaho;-Inc., Idako-Falls, ID..83415,-U.S.A.

SUMMARY
A- néw. superconvergent projection formula for determining vorticity boundary-data in the stream-
function-vorticity method is constructed:

INTRODUCTION

The- stream-function—vorticity (¥,w) -formulation is a standard- approach for numerical
treatment of 2D viscous flows. In:this:procedure the problem reduces-to-solution-of a. couplnd
.paxr o! parual dlffercnnal equatlons - the vorucxty ;ransport equanon and stream- fundlon
uc'ates approxnmatmg v and w.- A well known difficulty in- thls algonthm is:th problem of

: specn'ymg vorticity-boundary data-as esscmnal data for the vorticity-transport equation. It is
standard practice on rectangular finite- difference grids to use one-sided finite differences of.the
stream-funcuon iterate to compute an:approximation to the velocity and thereby the boundaary
vomcuy ' A similar- procedure can-be.used in-finite-element methods but-does not fit-naturally
in -this- framework. Here we present-an-alternative approach based-on superconvergent flux

_ -ideas-that-applies to both-straight and-curved boundaries-and can be-used for either finite-
clément-or finite-difference computations.

_.FORMULATION

‘Recali:thatin the stream-function—vorticity.method the stream function-}» satisfies the Poisson
cquation
-AY=win Q ()]

Here w-is-the vorticity determined trom.the-vorticity transport equation {e:g. for steady Stokes
flow.Aw =:f). The stream-function—vorticity equations are-frequently-iteratively decoupled in
the numerical solution scheme. The-objective heie is to construct a proccudre that exploits
superconvergence ideas to develop a.post-processing formula from (1) for-approximating the
vorticity on the boundary. This can-then be used as data for the vorticity transport equation.
‘We_introduce the familiar Green~Gauss formula for the Laplacian:-operator

g (—au) dxdy:[ Vi - Vu dxdy-g Ug-l:l-ds (2)
0 Jo ) ap on
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where u, v are arbitrary admissible functions. In particular, let us select v = ¢ sansfymg {1 s0

. that

. [ wvdxdy:S w-dexdy-S ”fds 3)
1]

0

a

Now (3) is an identity satisfied by the solution (¥, w) for arbitrary admissible v. In previous
superconvergence studies, a similar construction has been developed and the approximate
solution introduced to obtain superconvergent boundary flux approximations (i.e. for dy,/dn)
(e.g. see Wheeler?, Carey’). In the present case we instead use the known boundary data
Ay[on = us, where s is the tangential direction. Then for known ¢ and d¢/dn in (3) we have a
projection formula for vorticity in . Now set the approximate solution yy for ¥ on the
discretized domain Q, with v = ¢;, the piecewise-polynomial Lagrange basis function assciated
with node i on the boundary, to get the approximate projection (for w* = w)

S w"qbldxdy:S V\b;.'qu;dxdy-S usdi ds @
418 g [+ i

Now as i traverses the boundary nodes the integral on the left involves only the strip of elements
adjacent to the boundary. Furthermore, since ¢;(xj, ¥;) = 8y, using a Lobatto (node point)
quadrature on the left simplifies the expression to yield an explicit superconvergent extraction
formula approximating the vorticity at boundary node i within quadrature accuracy as

O = Sn Vs Vo dx dy — LQ ushi ds )

-

where Q; corresponds to the accumulated quadrature weight at node i from the adjacent
elements.

Remarks

1. For a rectilinear boundary and bilinear elements the extraction formula (5) is eqguivalent to
a one-sided second-order difference approximation.® For higher-degree elements, more
general boundary shapes and irregular grids, (5) is still applicable. The scheme Has been
applied in finite-element calculations for viscous flow applications with straight and curved
boundary geometries as well as moving surfaces (Murray?).

2. The scheme (5) can be applied with finite-difference methods by formally introdicing the
nodal interpolant of the finite-difference solution as .
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